{"title":"新subaru同步加速器EUV光刻抗蚀剂的基本评价","authors":"Takeo Watanabe, T. Harada, Shinji Yamakawa","doi":"10.2494/photopolymer.34.49","DOIUrl":null,"url":null,"abstract":"Extreme ultraviolet lithography was started to use for the production of 7-nm node-logic-semiconductor devices in 2019. And it was adapted to use for high volume manufacturing (HVM) of 5-nm logic devices in 2020. EUVL is required to be extended to use in 1.5-nm-node-device fabrications. However, it still has many technical issues. Especially, for EUV resists, simultaneous achievement of high sensitivity and low line edge width are required. To solve the EUV resist issue, the fundamental work using synchrotron in soft X-ray region is necessary. The fundamental evaluation study of EUV resist at NewSUBARU synchrotron light facility is described in this paper.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fundamental Evaluation of Resist on EUV Lithography at NewSUBARU Synchrotron Light Facility\",\"authors\":\"Takeo Watanabe, T. Harada, Shinji Yamakawa\",\"doi\":\"10.2494/photopolymer.34.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme ultraviolet lithography was started to use for the production of 7-nm node-logic-semiconductor devices in 2019. And it was adapted to use for high volume manufacturing (HVM) of 5-nm logic devices in 2020. EUVL is required to be extended to use in 1.5-nm-node-device fabrications. However, it still has many technical issues. Especially, for EUV resists, simultaneous achievement of high sensitivity and low line edge width are required. To solve the EUV resist issue, the fundamental work using synchrotron in soft X-ray region is necessary. The fundamental evaluation study of EUV resist at NewSUBARU synchrotron light facility is described in this paper.\",\"PeriodicalId\":16810,\"journal\":{\"name\":\"Journal of Photopolymer Science and Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photopolymer Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2494/photopolymer.34.49\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photopolymer Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2494/photopolymer.34.49","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Fundamental Evaluation of Resist on EUV Lithography at NewSUBARU Synchrotron Light Facility
Extreme ultraviolet lithography was started to use for the production of 7-nm node-logic-semiconductor devices in 2019. And it was adapted to use for high volume manufacturing (HVM) of 5-nm logic devices in 2020. EUVL is required to be extended to use in 1.5-nm-node-device fabrications. However, it still has many technical issues. Especially, for EUV resists, simultaneous achievement of high sensitivity and low line edge width are required. To solve the EUV resist issue, the fundamental work using synchrotron in soft X-ray region is necessary. The fundamental evaluation study of EUV resist at NewSUBARU synchrotron light facility is described in this paper.
期刊介绍:
Journal of Photopolymer Science and Technology is devoted to the publication of articles on the scientific progress and the technical development of photopolymers.