使用预训练 BERT 对有关电磁场对人体健康危害的科学文章进行研究类别分类

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sang-Woo Lee , Jung-Hyok Kwon , Dongwan Kim , Eui-Jik Kim
{"title":"使用预训练 BERT 对有关电磁场对人体健康危害的科学文章进行研究类别分类","authors":"Sang-Woo Lee ,&nbsp;Jung-Hyok Kwon ,&nbsp;Dongwan Kim ,&nbsp;Eui-Jik Kim","doi":"10.1016/j.icte.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents bidirectional encoder representations from transformers (BERT)-based deep learning model for the classification of scientific articles. This model aims to increase the efficiency and reliability of human health risk assessments related to electromagnetic fields (EMF). The proposed model takes the title and abstract of EMF-related articles and classifies them into four categories: animal exposure experiment, cell exposure experiment, human exposure experiment, and epidemiological study. We conducted a performance evaluation to verify the superiority of the proposed model. The results demonstrated that the proposed model outperforms other deep learning models that use pre-trained embeddings, with an average accuracy of 98.33%.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 2","pages":"Pages 336-341"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240595952300108X/pdfft?md5=15f9324a2d9c0d5df63909e1b4a2ea6f&pid=1-s2.0-S240595952300108X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research category classification of scientific articles on human health risks of electromagnetic fields using pre-trained BERT\",\"authors\":\"Sang-Woo Lee ,&nbsp;Jung-Hyok Kwon ,&nbsp;Dongwan Kim ,&nbsp;Eui-Jik Kim\",\"doi\":\"10.1016/j.icte.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents bidirectional encoder representations from transformers (BERT)-based deep learning model for the classification of scientific articles. This model aims to increase the efficiency and reliability of human health risk assessments related to electromagnetic fields (EMF). The proposed model takes the title and abstract of EMF-related articles and classifies them into four categories: animal exposure experiment, cell exposure experiment, human exposure experiment, and epidemiological study. We conducted a performance evaluation to verify the superiority of the proposed model. The results demonstrated that the proposed model outperforms other deep learning models that use pre-trained embeddings, with an average accuracy of 98.33%.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 2\",\"pages\":\"Pages 336-341\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S240595952300108X/pdfft?md5=15f9324a2d9c0d5df63909e1b4a2ea6f&pid=1-s2.0-S240595952300108X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240595952300108X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240595952300108X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于变压器双向编码器表示(BERT)的深度学习模型,用于科学文章的分类。该模型旨在提高与电磁场(EMF)相关的人类健康风险评估的效率和可靠性。该模型根据电磁场相关文章的标题和摘要将其分为四类:动物暴露实验、细胞暴露实验、人类暴露实验和流行病学研究。我们进行了性能评估,以验证所提模型的优越性。结果表明,所提出的模型优于其他使用预训练嵌入的深度学习模型,平均准确率为 98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research category classification of scientific articles on human health risks of electromagnetic fields using pre-trained BERT

This paper presents bidirectional encoder representations from transformers (BERT)-based deep learning model for the classification of scientific articles. This model aims to increase the efficiency and reliability of human health risk assessments related to electromagnetic fields (EMF). The proposed model takes the title and abstract of EMF-related articles and classifies them into four categories: animal exposure experiment, cell exposure experiment, human exposure experiment, and epidemiological study. We conducted a performance evaluation to verify the superiority of the proposed model. The results demonstrated that the proposed model outperforms other deep learning models that use pre-trained embeddings, with an average accuracy of 98.33%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信