用磁噪声法无损检测增材热处理钢样的质量

IF 0.2 Q4 INSTRUMENTS & INSTRUMENTATION
V. Busko, A. Kren, G. A. Lanzman
{"title":"用磁噪声法无损检测增材热处理钢样的质量","authors":"V. Busko, A. Kren, G. A. Lanzman","doi":"10.21122/2220-9506-2022-13-3-228-236","DOIUrl":null,"url":null,"abstract":"The manufacture of products using additive technologies is accompanied by the unpredictable appearance of inhomogeneity of properties, anisotropy, residual stresses, porosity, and other defects. Therefore, there is a great relevance of non-destructive quality control of products obtained by additive technologies. The purpose of the paper is the experimental investigation of the possibility of testing and evaluation of the quality of heat treatment of three-dimensional and cast samples by non-destructive control methods.The low-alloy steel 09G2S samples, which was obtained by casting and selective laser sintering different modes of subsequent heat treatments were studied. The method of the Barkhausen effect and the instrumented indentation method for measuring the material hardness were applied.It was experimentally established that both methods are highly sensitive to annealed and normalized three-dimensional samples and their rejection. Compared to the hardness measurement method, which is mainly associated with phase-structural changes, the magnetic noise method due to selectivity to other controlled parameters is additionally sensitive to cast samples (at the same time the microstructures of cast and normalized three-dimensional samples are close to each other according to X-ray data).The magnetic noise method can be used as one of the physical methods for evaluation the quality and control of the heat treatment of 3D samples at the manufacturing stage when testing their types and modes, as well as sorting samples. ","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Destructive Testing by Magnetic Noise Method of the Quality of Heat Treatment of Steel Samples Obtained by Additive Technology\",\"authors\":\"V. Busko, A. Kren, G. A. Lanzman\",\"doi\":\"10.21122/2220-9506-2022-13-3-228-236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manufacture of products using additive technologies is accompanied by the unpredictable appearance of inhomogeneity of properties, anisotropy, residual stresses, porosity, and other defects. Therefore, there is a great relevance of non-destructive quality control of products obtained by additive technologies. The purpose of the paper is the experimental investigation of the possibility of testing and evaluation of the quality of heat treatment of three-dimensional and cast samples by non-destructive control methods.The low-alloy steel 09G2S samples, which was obtained by casting and selective laser sintering different modes of subsequent heat treatments were studied. The method of the Barkhausen effect and the instrumented indentation method for measuring the material hardness were applied.It was experimentally established that both methods are highly sensitive to annealed and normalized three-dimensional samples and their rejection. Compared to the hardness measurement method, which is mainly associated with phase-structural changes, the magnetic noise method due to selectivity to other controlled parameters is additionally sensitive to cast samples (at the same time the microstructures of cast and normalized three-dimensional samples are close to each other according to X-ray data).The magnetic noise method can be used as one of the physical methods for evaluation the quality and control of the heat treatment of 3D samples at the manufacturing stage when testing their types and modes, as well as sorting samples. \",\"PeriodicalId\":41798,\"journal\":{\"name\":\"Devices and Methods of Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Devices and Methods of Measurements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2220-9506-2022-13-3-228-236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2022-13-3-228-236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

使用添加剂技术制造产品伴随着不可预测的性能不均匀性、各向异性、残余应力、孔隙率和其他缺陷的出现。因此,通过增材技术获得的产品的无损质量控制具有很大的相关性。本文的目的是对用无损控制方法检测和评价三维和铸造试样热处理质量的可能性进行实验研究。对采用铸造和选择性激光烧结制备的低合金钢09G2S试样进行了不同热处理方式的研究。采用巴克豪森效应法和仪器压痕法测量材料硬度。实验证明,这两种方法对退火和归一化三维样品及其排斥都非常敏感。相对于主要与相结构变化相关的硬度测量方法,磁噪声法由于对其他控制参数的选择性,对铸态样品更加敏感(同时根据x射线数据,铸态和归一化三维样品的显微组织接近)。磁噪声法可作为3D样品在制造阶段的热处理质量和控制的物理方法之一,用于测试样品的类型和模式,以及样品的分选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Destructive Testing by Magnetic Noise Method of the Quality of Heat Treatment of Steel Samples Obtained by Additive Technology
The manufacture of products using additive technologies is accompanied by the unpredictable appearance of inhomogeneity of properties, anisotropy, residual stresses, porosity, and other defects. Therefore, there is a great relevance of non-destructive quality control of products obtained by additive technologies. The purpose of the paper is the experimental investigation of the possibility of testing and evaluation of the quality of heat treatment of three-dimensional and cast samples by non-destructive control methods.The low-alloy steel 09G2S samples, which was obtained by casting and selective laser sintering different modes of subsequent heat treatments were studied. The method of the Barkhausen effect and the instrumented indentation method for measuring the material hardness were applied.It was experimentally established that both methods are highly sensitive to annealed and normalized three-dimensional samples and their rejection. Compared to the hardness measurement method, which is mainly associated with phase-structural changes, the magnetic noise method due to selectivity to other controlled parameters is additionally sensitive to cast samples (at the same time the microstructures of cast and normalized three-dimensional samples are close to each other according to X-ray data).The magnetic noise method can be used as one of the physical methods for evaluation the quality and control of the heat treatment of 3D samples at the manufacturing stage when testing their types and modes, as well as sorting samples. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Devices and Methods of Measurements
Devices and Methods of Measurements INSTRUMENTS & INSTRUMENTATION-
自引率
25.00%
发文量
18
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信