{"title":"杂交培育的高级红花基因型的抗寒性鉴定及部分农艺性状","authors":"Emrullah Culpan","doi":"10.1002/aocs.12754","DOIUrl":null,"url":null,"abstract":"<p>The development of winter-tolerant safflower genotypes is crucial for the improvement of global safflower agriculture. The aim of the present study was to determine the cold tolerance abilities and some agricultural characteristics of advanced safflower genotypes. For this purpose, 10 advanced safflower genotypes were used in four different locations. The experimental design was a randomized complete block design with three replications. Winter survival and agricultural characteristics were significantly affected by growing season, location and genotype. Winter survival varies between 86.43% and 93.91% among the genotypes which is promising for winter sowing. As the average of 2 years, the highest oil content (36.25%) was observed in genotype EC21 and it was followed by genotypes EC11 (35.51%) and EC20 (35.49%). As with the seed yield, the high winter survival of genotypes with high oil content is highly promising in terms of winter sowing. Safflower should be grown in winter with mild temperature regions for high seed yield and sustainable safflower production. Therefore, this study focused on winter-tolerant genotypes that are superior one in terms of seed yield and oil content.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"100 11","pages":"915-926"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of cold tolerance and some agronomic traits of advanced safflower genotypes developed by hybridization\",\"authors\":\"Emrullah Culpan\",\"doi\":\"10.1002/aocs.12754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of winter-tolerant safflower genotypes is crucial for the improvement of global safflower agriculture. The aim of the present study was to determine the cold tolerance abilities and some agricultural characteristics of advanced safflower genotypes. For this purpose, 10 advanced safflower genotypes were used in four different locations. The experimental design was a randomized complete block design with three replications. Winter survival and agricultural characteristics were significantly affected by growing season, location and genotype. Winter survival varies between 86.43% and 93.91% among the genotypes which is promising for winter sowing. As the average of 2 years, the highest oil content (36.25%) was observed in genotype EC21 and it was followed by genotypes EC11 (35.51%) and EC20 (35.49%). As with the seed yield, the high winter survival of genotypes with high oil content is highly promising in terms of winter sowing. Safflower should be grown in winter with mild temperature regions for high seed yield and sustainable safflower production. Therefore, this study focused on winter-tolerant genotypes that are superior one in terms of seed yield and oil content.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"100 11\",\"pages\":\"915-926\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12754\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12754","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Identification of cold tolerance and some agronomic traits of advanced safflower genotypes developed by hybridization
The development of winter-tolerant safflower genotypes is crucial for the improvement of global safflower agriculture. The aim of the present study was to determine the cold tolerance abilities and some agricultural characteristics of advanced safflower genotypes. For this purpose, 10 advanced safflower genotypes were used in four different locations. The experimental design was a randomized complete block design with three replications. Winter survival and agricultural characteristics were significantly affected by growing season, location and genotype. Winter survival varies between 86.43% and 93.91% among the genotypes which is promising for winter sowing. As the average of 2 years, the highest oil content (36.25%) was observed in genotype EC21 and it was followed by genotypes EC11 (35.51%) and EC20 (35.49%). As with the seed yield, the high winter survival of genotypes with high oil content is highly promising in terms of winter sowing. Safflower should be grown in winter with mild temperature regions for high seed yield and sustainable safflower production. Therefore, this study focused on winter-tolerant genotypes that are superior one in terms of seed yield and oil content.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.