Peace C. Asuzu, Victor T. Wyatt, Papa Nii Asare-Okai, Nii Adjetey Tawiah, Kerby C. Jones, Alberta N. A. Aryee
{"title":"溶剂体系对棕榈仁油的提取、质量特征和挥发性化合物的比较","authors":"Peace C. Asuzu, Victor T. Wyatt, Papa Nii Asare-Okai, Nii Adjetey Tawiah, Kerby C. Jones, Alberta N. A. Aryee","doi":"10.1002/aocs.12728","DOIUrl":null,"url":null,"abstract":"<p>Hexane (HEX) and dichloromethane (DCM) have been used to extract oils from various sources due to their expansive solubility and low volatility that ease removal at low temperatures. However, environmental and health concerns make them undesirable solvents. The aim of this study was to evaluate the extraction efficiency and physicochemical characteristics of palm kernel oil (PKO) extracted with the addition of acetone in HEX-acetone (1:1, vol/vol) and DCM-acetone (1:1, vol/vol) mixtures as an alternative to DCM and HEX alone. PKO extracted with co-solvent systems had better quality characteristics compared with single solvent extracts. The oil recovered, free fatty acid content, peroxide value and other quality characteristics, and thermal properties were within the range for PKO, and similar oils as stipulated in standards. Monounsaturated fatty acid content in PKO was up to 70% of which lauric acid was the most abundant (48%–52%). A total of 50 volatile compounds were identified by GC–MS in all the extracts including amide (1), alcohol (1), aldehydes (2), ketones (3), acids (6), esters (6) and hydrocarbons (31) with higher numbers of volatiles in the HEX extracts compared to the DCM extracts. Dodecanoic acid, hexanal, and 2-undecanone were the most abundant acid, aldehyde, and ketone, respectively. Principal component analysis (PCA) differentiated the volatiles identified on the polar and non-polar columns with 88.2% and 8.8%, and 67.3% and 19.6% of the variation accounted for by PC1 and PC2, respectively, with several common volatile components forming a cluster from all the solvents used.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of solvent systems on extraction, quality characteristics, and volatile compounds of palm kernel oil\",\"authors\":\"Peace C. Asuzu, Victor T. Wyatt, Papa Nii Asare-Okai, Nii Adjetey Tawiah, Kerby C. Jones, Alberta N. A. Aryee\",\"doi\":\"10.1002/aocs.12728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hexane (HEX) and dichloromethane (DCM) have been used to extract oils from various sources due to their expansive solubility and low volatility that ease removal at low temperatures. However, environmental and health concerns make them undesirable solvents. The aim of this study was to evaluate the extraction efficiency and physicochemical characteristics of palm kernel oil (PKO) extracted with the addition of acetone in HEX-acetone (1:1, vol/vol) and DCM-acetone (1:1, vol/vol) mixtures as an alternative to DCM and HEX alone. PKO extracted with co-solvent systems had better quality characteristics compared with single solvent extracts. The oil recovered, free fatty acid content, peroxide value and other quality characteristics, and thermal properties were within the range for PKO, and similar oils as stipulated in standards. Monounsaturated fatty acid content in PKO was up to 70% of which lauric acid was the most abundant (48%–52%). A total of 50 volatile compounds were identified by GC–MS in all the extracts including amide (1), alcohol (1), aldehydes (2), ketones (3), acids (6), esters (6) and hydrocarbons (31) with higher numbers of volatiles in the HEX extracts compared to the DCM extracts. Dodecanoic acid, hexanal, and 2-undecanone were the most abundant acid, aldehyde, and ketone, respectively. Principal component analysis (PCA) differentiated the volatiles identified on the polar and non-polar columns with 88.2% and 8.8%, and 67.3% and 19.6% of the variation accounted for by PC1 and PC2, respectively, with several common volatile components forming a cluster from all the solvents used.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12728\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12728","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Comparison of solvent systems on extraction, quality characteristics, and volatile compounds of palm kernel oil
Hexane (HEX) and dichloromethane (DCM) have been used to extract oils from various sources due to their expansive solubility and low volatility that ease removal at low temperatures. However, environmental and health concerns make them undesirable solvents. The aim of this study was to evaluate the extraction efficiency and physicochemical characteristics of palm kernel oil (PKO) extracted with the addition of acetone in HEX-acetone (1:1, vol/vol) and DCM-acetone (1:1, vol/vol) mixtures as an alternative to DCM and HEX alone. PKO extracted with co-solvent systems had better quality characteristics compared with single solvent extracts. The oil recovered, free fatty acid content, peroxide value and other quality characteristics, and thermal properties were within the range for PKO, and similar oils as stipulated in standards. Monounsaturated fatty acid content in PKO was up to 70% of which lauric acid was the most abundant (48%–52%). A total of 50 volatile compounds were identified by GC–MS in all the extracts including amide (1), alcohol (1), aldehydes (2), ketones (3), acids (6), esters (6) and hydrocarbons (31) with higher numbers of volatiles in the HEX extracts compared to the DCM extracts. Dodecanoic acid, hexanal, and 2-undecanone were the most abundant acid, aldehyde, and ketone, respectively. Principal component analysis (PCA) differentiated the volatiles identified on the polar and non-polar columns with 88.2% and 8.8%, and 67.3% and 19.6% of the variation accounted for by PC1 and PC2, respectively, with several common volatile components forming a cluster from all the solvents used.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.