{"title":"利用大蒜渣开发大蒜多糖Fe(III)复合物,以增强体内补铁活性。","authors":"Yongqiu Qi, Zhichang Qiu, Lingyu Li, Renjie Zhao, Lu Xiang, Xulin Gong, Zhenjia Zheng, Xuguang Qiao","doi":"10.1016/j.foodchem.2023.137819","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO<sub>4</sub> did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.</p>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"437 Pt 1","pages":"137819"},"PeriodicalIF":8.5000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing garlic polysaccharide-Fe (III) complexes using garlic pomace to provide enhanced iron-supplementing activity in vivo.\",\"authors\":\"Yongqiu Qi, Zhichang Qiu, Lingyu Li, Renjie Zhao, Lu Xiang, Xulin Gong, Zhenjia Zheng, Xuguang Qiao\",\"doi\":\"10.1016/j.foodchem.2023.137819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO<sub>4</sub> did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.</p>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"437 Pt 1\",\"pages\":\"137819\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2023.137819\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2023.137819","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Developing garlic polysaccharide-Fe (III) complexes using garlic pomace to provide enhanced iron-supplementing activity in vivo.
This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO4 did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.