{"title":"古菌病毒抗CRISPR蛋白抑制III-B型CRISPR-Cas的分子基础。","authors":"Jinzhong Lin, Lauge Alfastsen, Yuvaraj Bhoobalan-Chitty, Xu Peng","doi":"10.1016/j.chom.2023.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"1837-1849.e5"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein.\",\"authors\":\"Jinzhong Lin, Lauge Alfastsen, Yuvaraj Bhoobalan-Chitty, Xu Peng\",\"doi\":\"10.1016/j.chom.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.</p>\",\"PeriodicalId\":93926,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\" \",\"pages\":\"1837-1849.e5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2023.10.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chom.2023.10.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein.
Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.