内生链霉菌中高度还原的肉桂酰脂质雷霉素a的发现和生物合成研究。

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Jieqian Kong, Chengshuang Huang, Yi Xiong, Baihuan Li, Wenping Kong, Wangyang Liu, Zhouke Tan, Dian Peng*, Yanwen Duan* and Xiangcheng Zhu*, 
{"title":"内生链霉菌中高度还原的肉桂酰脂质雷霉素a的发现和生物合成研究。","authors":"Jieqian Kong,&nbsp;Chengshuang Huang,&nbsp;Yi Xiong,&nbsp;Baihuan Li,&nbsp;Wenping Kong,&nbsp;Wangyang Liu,&nbsp;Zhouke Tan,&nbsp;Dian Peng*,&nbsp;Yanwen Duan* and Xiangcheng Zhu*,&nbsp;","doi":"10.1021/acs.jnatprod.3c00199","DOIUrl":null,"url":null,"abstract":"<p >A <i>Tripterygium wilfordii</i> endophyte, <i>Streptomyces</i> sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (<b>1</b>). Structure–activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of <b>1</b> against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (<b>2</b>). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of <b>1</b>, which provides a new insight into the biosynthesis of cinnamoyl lipids.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":"86 7","pages":"1870–1877"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp.\",\"authors\":\"Jieqian Kong,&nbsp;Chengshuang Huang,&nbsp;Yi Xiong,&nbsp;Baihuan Li,&nbsp;Wenping Kong,&nbsp;Wangyang Liu,&nbsp;Zhouke Tan,&nbsp;Dian Peng*,&nbsp;Yanwen Duan* and Xiangcheng Zhu*,&nbsp;\",\"doi\":\"10.1021/acs.jnatprod.3c00199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A <i>Tripterygium wilfordii</i> endophyte, <i>Streptomyces</i> sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (<b>1</b>). Structure–activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of <b>1</b> against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (<b>2</b>). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of <b>1</b>, which provides a new insight into the biosynthesis of cinnamoyl lipids.</p>\",\"PeriodicalId\":47,\"journal\":{\"name\":\"Journal of Natural Products \",\"volume\":\"86 7\",\"pages\":\"1870–1877\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Products \",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c00199\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c00199","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

雷公藤内生菌Streptomyces sp. CB04723被证明可以产生异常高度降低的细胞毒性肉桂基脂质雷霉素A(1)。结构-活性关系研究表明,与5-(2-甲基苯基)-4-戊烯酸相比,肉桂基部分和饱和脂肪酸侧链对于1对三阴性乳腺癌细胞系MDA-MB-231的细胞毒性改善超过400倍是必不可少的(2)。基因失活和过表达表明Hxs15很可能是一种烯酰还原酶,参与了侧链1的还原,这为肉桂酰脂质的生物合成提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp.

Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp.

A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure–activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信