Zihao Wang;Zhifei Xu;Jiayi He;Hervé Delingette;Jun Fan
{"title":"长短期记忆神经均衡器","authors":"Zihao Wang;Zhifei Xu;Jiayi He;Hervé Delingette;Jun Fan","doi":"10.1109/TSIPI.2023.3242855","DOIUrl":null,"url":null,"abstract":"A trainable neural equalizer based on the long short-term memory (LSTM) neural network architecture is proposed in this article to recover the channel output signal. The current widely used solution for the transmission line signal recovery is generally realized through a decision feedback equalizer (DFE) or : Feed forward equalizer (FFE) combination. The novel learning-based equalizer is suitable for highly nonlinear signal restoration, thanks to its recurrent design. The effectiveness of the LSTM equalizer (LSTME) is shown through an advance design system simulation channel signal equalization task, including a quantitative and qualitative comparison with an FFE–DFE combination. The LSTM neural network shows good equalization results compared with that of the FFE–DFE combination. The advantage of a trainable LSTME lies in its ability to learn its parameters in a flexible manner and to tackle complex scenarios without any hardware modification. This can reduce the equalizer implantation cost for variant transmission channels and bring additional portability in practical applications.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"2 ","pages":"13-22"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Long Short-Term Memory Neural Equalizer\",\"authors\":\"Zihao Wang;Zhifei Xu;Jiayi He;Hervé Delingette;Jun Fan\",\"doi\":\"10.1109/TSIPI.2023.3242855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A trainable neural equalizer based on the long short-term memory (LSTM) neural network architecture is proposed in this article to recover the channel output signal. The current widely used solution for the transmission line signal recovery is generally realized through a decision feedback equalizer (DFE) or : Feed forward equalizer (FFE) combination. The novel learning-based equalizer is suitable for highly nonlinear signal restoration, thanks to its recurrent design. The effectiveness of the LSTM equalizer (LSTME) is shown through an advance design system simulation channel signal equalization task, including a quantitative and qualitative comparison with an FFE–DFE combination. The LSTM neural network shows good equalization results compared with that of the FFE–DFE combination. The advantage of a trainable LSTME lies in its ability to learn its parameters in a flexible manner and to tackle complex scenarios without any hardware modification. This can reduce the equalizer implantation cost for variant transmission channels and bring additional portability in practical applications.\",\"PeriodicalId\":100646,\"journal\":{\"name\":\"IEEE Transactions on Signal and Power Integrity\",\"volume\":\"2 \",\"pages\":\"13-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Power Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10038624/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10038624/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A trainable neural equalizer based on the long short-term memory (LSTM) neural network architecture is proposed in this article to recover the channel output signal. The current widely used solution for the transmission line signal recovery is generally realized through a decision feedback equalizer (DFE) or : Feed forward equalizer (FFE) combination. The novel learning-based equalizer is suitable for highly nonlinear signal restoration, thanks to its recurrent design. The effectiveness of the LSTM equalizer (LSTME) is shown through an advance design system simulation channel signal equalization task, including a quantitative and qualitative comparison with an FFE–DFE combination. The LSTM neural network shows good equalization results compared with that of the FFE–DFE combination. The advantage of a trainable LSTME lies in its ability to learn its parameters in a flexible manner and to tackle complex scenarios without any hardware modification. This can reduce the equalizer implantation cost for variant transmission channels and bring additional portability in practical applications.