多重反射的新公式及其在高速通道设计中的应用

Muqi Ouyang;Xiao-Ding Cai;Bo Pu;Qian Gao;Srinath Penugonda;Chaofeng Li;Bidyut Sen;Chulsoon Hwang;DongHyun Kim
{"title":"多重反射的新公式及其在高速通道设计中的应用","authors":"Muqi Ouyang;Xiao-Ding Cai;Bo Pu;Qian Gao;Srinath Penugonda;Chaofeng Li;Bidyut Sen;Chulsoon Hwang;DongHyun Kim","doi":"10.1109/TSIPI.2022.3176592","DOIUrl":null,"url":null,"abstract":"Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, where reflections become one of the most critical concerns in high-speed designs. In this article, for the first time, we analyzed the traditional reflection theory and proposed and verified a new formulation, which exhibits the reflection-related parameters explicitly, indicating where design optimization can be made for high-bandwidth applications using the backtracked propagation method. Our closed-form formulation is applied to high-speed channel examples, where effective mitigation of negative impact from reflections on signal integrity can be identified to be used as a prelayout channel design guide. Our proposed formulation of the reflection theory provides more accurate prediction of high-speed channel behavior to minimize the negative signal integrity impact from reflections.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"1 ","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel Formulations of Multireflections and Their Applications to High-Speed Channel Design\",\"authors\":\"Muqi Ouyang;Xiao-Ding Cai;Bo Pu;Qian Gao;Srinath Penugonda;Chaofeng Li;Bidyut Sen;Chulsoon Hwang;DongHyun Kim\",\"doi\":\"10.1109/TSIPI.2022.3176592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, where reflections become one of the most critical concerns in high-speed designs. In this article, for the first time, we analyzed the traditional reflection theory and proposed and verified a new formulation, which exhibits the reflection-related parameters explicitly, indicating where design optimization can be made for high-bandwidth applications using the backtracked propagation method. Our closed-form formulation is applied to high-speed channel examples, where effective mitigation of negative impact from reflections on signal integrity can be identified to be used as a prelayout channel design guide. Our proposed formulation of the reflection theory provides more accurate prediction of high-speed channel behavior to minimize the negative signal integrity impact from reflections.\",\"PeriodicalId\":100646,\"journal\":{\"name\":\"IEEE Transactions on Signal and Power Integrity\",\"volume\":\"1 \",\"pages\":\"43-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Power Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9780030/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9780030/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

反射理论针对微波和射频(RF)应用已经建立了几十年。随着超高带宽应用的出现,如112 Gb/s和更高速的以太网协议,高速通道中的不连续性会对信号质量产生负面影响,反射成为高速设计中最关键的问题之一。在本文中,我们首次分析了传统的反射理论,并提出并验证了一个新的公式,该公式明确地展示了反射相关的参数,表明了使用回溯传播方法可以对高带宽应用进行设计优化的地方。我们的闭合形式公式应用于高速通道示例,其中可以确定有效缓解反射对信号完整性的负面影响,用作预布局通道设计指南。我们提出的反射理论公式提供了对高速信道行为的更准确预测,以最大限度地减少反射对信号完整性的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Formulations of Multireflections and Their Applications to High-Speed Channel Design
Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, where reflections become one of the most critical concerns in high-speed designs. In this article, for the first time, we analyzed the traditional reflection theory and proposed and verified a new formulation, which exhibits the reflection-related parameters explicitly, indicating where design optimization can be made for high-bandwidth applications using the backtracked propagation method. Our closed-form formulation is applied to high-speed channel examples, where effective mitigation of negative impact from reflections on signal integrity can be identified to be used as a prelayout channel design guide. Our proposed formulation of the reflection theory provides more accurate prediction of high-speed channel behavior to minimize the negative signal integrity impact from reflections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信