神经形态芯片信号完整性分析的不确定度量化

Hanzhi Ma;Da Li;Tuomin Tao;Xingjian Shangguan;En-Xiao Liu;Jose Schutt-Aine;Andreas C. Cangellaris;Er-Ping Li
{"title":"神经形态芯片信号完整性分析的不确定度量化","authors":"Hanzhi Ma;Da Li;Tuomin Tao;Xingjian Shangguan;En-Xiao Liu;Jose Schutt-Aine;Andreas C. Cangellaris;Er-Ping Li","doi":"10.1109/TSIPI.2022.3222122","DOIUrl":null,"url":null,"abstract":"A dimensionality reduction based neural network framework is introduced for uncertainty quantification of time-domain response based on system uncertain design parameters for neuromorphic chips. The proposed method firstly makes use of the singular value decomposition (SVD) method to find the basis functions and corresponding coefficients of time-domain response, of which coefficients are used as a lower dimensional target outputs in neural network model compared with time sampling points prediction. This newly proposed method then develops an integrated neural network structure to simultaneously find the mean and variance of target coefficients with a combined definition of loss function, which can be utilized together with basis functions to construct the prediction interval of time-domain response. A memrisor-based crossbar array is applied in this work to verify the performance of the proposed method with the comparison of Monte Carlo method.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"1 ","pages":"160-169"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uncertainty Quantification of Signal Integrity Analysis for Neuromorphic Chips\",\"authors\":\"Hanzhi Ma;Da Li;Tuomin Tao;Xingjian Shangguan;En-Xiao Liu;Jose Schutt-Aine;Andreas C. Cangellaris;Er-Ping Li\",\"doi\":\"10.1109/TSIPI.2022.3222122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dimensionality reduction based neural network framework is introduced for uncertainty quantification of time-domain response based on system uncertain design parameters for neuromorphic chips. The proposed method firstly makes use of the singular value decomposition (SVD) method to find the basis functions and corresponding coefficients of time-domain response, of which coefficients are used as a lower dimensional target outputs in neural network model compared with time sampling points prediction. This newly proposed method then develops an integrated neural network structure to simultaneously find the mean and variance of target coefficients with a combined definition of loss function, which can be utilized together with basis functions to construct the prediction interval of time-domain response. A memrisor-based crossbar array is applied in this work to verify the performance of the proposed method with the comparison of Monte Carlo method.\",\"PeriodicalId\":100646,\"journal\":{\"name\":\"IEEE Transactions on Signal and Power Integrity\",\"volume\":\"1 \",\"pages\":\"160-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Power Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9953562/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9953562/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于降维的神经网络框架,用于基于系统不确定设计参数的神经形态芯片时域响应的不确定性量化。该方法首先利用奇异值分解(SVD)方法来寻找时域响应的基函数和相应的系数,与时间采样点预测相比,这些系数在神经网络模型中被用作较低维的目标输出。然后,这种新提出的方法开发了一种集成的神经网络结构,通过组合损失函数的定义,同时找到目标系数的均值和方差,可以将其与基函数一起用于构建时域响应的预测区间。本文采用基于忆阻器的交叉阵列,通过与蒙特卡罗方法的比较,验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Quantification of Signal Integrity Analysis for Neuromorphic Chips
A dimensionality reduction based neural network framework is introduced for uncertainty quantification of time-domain response based on system uncertain design parameters for neuromorphic chips. The proposed method firstly makes use of the singular value decomposition (SVD) method to find the basis functions and corresponding coefficients of time-domain response, of which coefficients are used as a lower dimensional target outputs in neural network model compared with time sampling points prediction. This newly proposed method then develops an integrated neural network structure to simultaneously find the mean and variance of target coefficients with a combined definition of loss function, which can be utilized together with basis functions to construct the prediction interval of time-domain response. A memrisor-based crossbar array is applied in this work to verify the performance of the proposed method with the comparison of Monte Carlo method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信