利用分子动力学和结合自由能计算研究聚糖在Omicron亚系XBB.1.5和XBB.1.16与宿主受体结合中的作用

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jaikee Kumar Singh, Jai Singh, Sandeep Kumar Srivastava
{"title":"利用分子动力学和结合自由能计算研究聚糖在Omicron亚系XBB.1.5和XBB.1.16与宿主受体结合中的作用","authors":"Jaikee Kumar Singh,&nbsp;Jai Singh,&nbsp;Sandeep Kumar Srivastava","doi":"10.1007/s10822-023-00526-0","DOIUrl":null,"url":null,"abstract":"<div><p>Omicron derived lineages viz. BA.2, BA.3, BA.4 BA.5, BF.7 and XBBs show prominence with improved immune escape, transmissibility, infectivity, and pathogenicity in general. Sub-variants, XBB.1.5 and XBB.1.16 have shown rapid spread, with mutations embedded throughout the viral genome, including the spike protein. Changing atomic landscapes in spike contributes significantly to modulate host pathogen interactions and infections thereof. In the present work, we computationally analyzed the binding affinities of spike receptor binding domains (RBDs) of XBB.1.5 and XBB.1.16 towards human angiotensin-converting enzyme 2 (hACE2) compared to Omicron. We have employed simulations and binding energy estimation of molecular complexes of spike-hACE2 to assess the interplay of interaction pattern and effect of mutations if any in the binding mode of the RBDs of these novel mutants. We calculated the binding free energy (BFE) of the RBD of the Omicron, XBB.1.5 and XBB.1.16 spike protein to hACE2. We showed that XBB.1.5 and XBB.1.16 can bind to human cells more strongly than Omicron due to the increased charge of the RBD, which enhances the electrostatic interactions with negatively charged hACE2. The per-residue decompositions further show that the Asp339His, Asp405Asn and Asn460Lys mutations in the XBBs RBD play a crucial role in enhancing the electrostatic interactions, by acquiring positively charged residues, thereby influencing the formation/loss of interfacial bonds and thus strongly affecting the spike RBD-hACE2 binding affinity. Simulation results also indicate less interference of heterogeneous glycans of XBB.1.5 spike RBD towards binding to hACE2. Moreover, despite having less interaction at the three interfacial contacts between XBB S RBD and hACE2 compared to Omicron, variants XBB.1.5 and XBB.1.16 had higher total binding free energies (ΔG<sub>bind</sub>) than Omicron due to the contribution of non-interfacial residues to the free energy, providing insight into the increased binding affinity of XBB1.5 and XBB.1.16. Furthermore, the presence of large positively charged surface patches in the XBBs act as drivers of electrostatic interactions, thus support the possibility of a higher binding affinity to hACE2.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00526-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating the role of glycans in Omicron sub-lineages XBB.1.5 and XBB.1.16 binding to host receptor using molecular dynamics and binding free energy calculations\",\"authors\":\"Jaikee Kumar Singh,&nbsp;Jai Singh,&nbsp;Sandeep Kumar Srivastava\",\"doi\":\"10.1007/s10822-023-00526-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Omicron derived lineages viz. BA.2, BA.3, BA.4 BA.5, BF.7 and XBBs show prominence with improved immune escape, transmissibility, infectivity, and pathogenicity in general. Sub-variants, XBB.1.5 and XBB.1.16 have shown rapid spread, with mutations embedded throughout the viral genome, including the spike protein. Changing atomic landscapes in spike contributes significantly to modulate host pathogen interactions and infections thereof. In the present work, we computationally analyzed the binding affinities of spike receptor binding domains (RBDs) of XBB.1.5 and XBB.1.16 towards human angiotensin-converting enzyme 2 (hACE2) compared to Omicron. We have employed simulations and binding energy estimation of molecular complexes of spike-hACE2 to assess the interplay of interaction pattern and effect of mutations if any in the binding mode of the RBDs of these novel mutants. We calculated the binding free energy (BFE) of the RBD of the Omicron, XBB.1.5 and XBB.1.16 spike protein to hACE2. We showed that XBB.1.5 and XBB.1.16 can bind to human cells more strongly than Omicron due to the increased charge of the RBD, which enhances the electrostatic interactions with negatively charged hACE2. The per-residue decompositions further show that the Asp339His, Asp405Asn and Asn460Lys mutations in the XBBs RBD play a crucial role in enhancing the electrostatic interactions, by acquiring positively charged residues, thereby influencing the formation/loss of interfacial bonds and thus strongly affecting the spike RBD-hACE2 binding affinity. Simulation results also indicate less interference of heterogeneous glycans of XBB.1.5 spike RBD towards binding to hACE2. Moreover, despite having less interaction at the three interfacial contacts between XBB S RBD and hACE2 compared to Omicron, variants XBB.1.5 and XBB.1.16 had higher total binding free energies (ΔG<sub>bind</sub>) than Omicron due to the contribution of non-interfacial residues to the free energy, providing insight into the increased binding affinity of XBB1.5 and XBB.1.16. Furthermore, the presence of large positively charged surface patches in the XBBs act as drivers of electrostatic interactions, thus support the possibility of a higher binding affinity to hACE2.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10822-023-00526-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00526-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00526-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

组粒衍生谱系,即BA.2、BA.3、BA.4、BA.5、BF.7和XBBs,在免疫逃逸、传播性、传染性和致病性方面表现突出。亚变体XBB.1.5和XBB.1.16显示出快速传播,突变嵌入整个病毒基因组,包括刺突蛋白。钉螺中原子景观的变化对调节宿主与病原体的相互作用及其感染有重要作用。在本工作中,我们计算分析了XBB.1.5和XBB.1.16的刺突受体结合域(rbd)与人血管紧张素转换酶2 (hACE2)的结合亲和力,并与Omicron进行比较。我们对spike-hACE2分子复合物进行了模拟和结合能估计,以评估这些新型突变体的rbd结合模式中相互作用模式和突变效应的相互作用。我们计算了Omicron、XBB.1.5和XBB.1.16刺突蛋白RBD对hACE2的结合自由能(binding free energy, BFE)。我们发现XBB.1.5和XBB.1.16能比Omicron更强地与人类细胞结合,这是由于RBD的电荷增加,从而增强了与带负电荷的hACE2的静电相互作用。每残基分解进一步表明,XBBs RBD中的Asp339His、Asp405Asn和Asn460Lys突变通过获得带正电的残基,从而影响界面键的形成/丧失,从而强烈影响刺状RBD- hace2的结合亲和力,在增强静电相互作用中起着至关重要的作用。模拟结果还表明,XBB.1.5 spike RBD的多相聚糖对hACE2结合的干扰较小。此外,尽管与Omicron相比,XBB S RBD与hACE2在三个界面接触处的相互作用较少,但变体XBB.1.5和XBB.1.16的总结合自由能(ΔGbind)高于Omicron,这是由于非界面残基对自由能的贡献,这为XBB1.5和XBB.1.16的结合亲和力增加提供了依据。此外,XBBs中存在的大的正电荷表面斑块作为静电相互作用的驱动因素,从而支持了与hACE2更高结合亲和力的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the role of glycans in Omicron sub-lineages XBB.1.5 and XBB.1.16 binding to host receptor using molecular dynamics and binding free energy calculations

Investigating the role of glycans in Omicron sub-lineages XBB.1.5 and XBB.1.16 binding to host receptor using molecular dynamics and binding free energy calculations

Omicron derived lineages viz. BA.2, BA.3, BA.4 BA.5, BF.7 and XBBs show prominence with improved immune escape, transmissibility, infectivity, and pathogenicity in general. Sub-variants, XBB.1.5 and XBB.1.16 have shown rapid spread, with mutations embedded throughout the viral genome, including the spike protein. Changing atomic landscapes in spike contributes significantly to modulate host pathogen interactions and infections thereof. In the present work, we computationally analyzed the binding affinities of spike receptor binding domains (RBDs) of XBB.1.5 and XBB.1.16 towards human angiotensin-converting enzyme 2 (hACE2) compared to Omicron. We have employed simulations and binding energy estimation of molecular complexes of spike-hACE2 to assess the interplay of interaction pattern and effect of mutations if any in the binding mode of the RBDs of these novel mutants. We calculated the binding free energy (BFE) of the RBD of the Omicron, XBB.1.5 and XBB.1.16 spike protein to hACE2. We showed that XBB.1.5 and XBB.1.16 can bind to human cells more strongly than Omicron due to the increased charge of the RBD, which enhances the electrostatic interactions with negatively charged hACE2. The per-residue decompositions further show that the Asp339His, Asp405Asn and Asn460Lys mutations in the XBBs RBD play a crucial role in enhancing the electrostatic interactions, by acquiring positively charged residues, thereby influencing the formation/loss of interfacial bonds and thus strongly affecting the spike RBD-hACE2 binding affinity. Simulation results also indicate less interference of heterogeneous glycans of XBB.1.5 spike RBD towards binding to hACE2. Moreover, despite having less interaction at the three interfacial contacts between XBB S RBD and hACE2 compared to Omicron, variants XBB.1.5 and XBB.1.16 had higher total binding free energies (ΔGbind) than Omicron due to the contribution of non-interfacial residues to the free energy, providing insight into the increased binding affinity of XBB1.5 and XBB.1.16. Furthermore, the presence of large positively charged surface patches in the XBBs act as drivers of electrostatic interactions, thus support the possibility of a higher binding affinity to hACE2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信