Pierre-Henry Gabrielle , Hemal Mehta , Daniel Barthelmes , Vincent Daien , Vuong Nguyen , Mark C. Gillies , Catherine P. Creuzot-Garcher
{"title":"从随机对照试验到真实世界的数据:指导糖尿病黄斑水肿治疗的临床证据。","authors":"Pierre-Henry Gabrielle , Hemal Mehta , Daniel Barthelmes , Vincent Daien , Vuong Nguyen , Mark C. Gillies , Catherine P. Creuzot-Garcher","doi":"10.1016/j.preteyeres.2023.101219","DOIUrl":null,"url":null,"abstract":"<div><p>Randomised clinical trials (RCTs) are generally considered the gold-standard for providing scientific evidence for treatments' effectiveness and safety but their findings may not always be generalisable to the broader population treated in routine clinical practice. RCTs include highly selected patient populations that fit specific inclusion and exclusion criteria. Although they may have a lower level of certainty than RCTs on the evidence hierarchy, real-world data (RWD), such as observational studies, registries and databases, provide real-world evidence (RWE) that can complement RCTs. For example, RWE may help satisfy requirements for a new indication of an already approved drug and help us better understand long-term treatment effectiveness, safety and patterns of use in clinical practice. Many countries have set up registries, observational studies and databases containing information on patients with retinal diseases, such as diabetic macular oedema (DMO). These DMO RWD have produced significant clinical evidence in the past decade that has changed the management of DMO. RWD and medico-administrative databases are a useful resource to identify low frequency safety signals. They often have long-term follow-up with a large number of patients and minimal exclusion criteria. We will discuss improvements in healthcare information exchange technologies, such as blockchain technology and FHIR (Fast Healthcare Interoperability Resources), which will connect and extend databases already available. These registries can be linked with existing or emerging retinal imaging modalities using artificial intelligence to aid diagnosis, treatment decisions and provide prognostic information. The results of RCTs and RWE are combined to provide evidence-based guidelines.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"97 ","pages":"Article 101219"},"PeriodicalIF":18.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350946223000587/pdfft?md5=917c14928a76d6684eaa6820451c6d59&pid=1-s2.0-S1350946223000587-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From randomised controlled trials to real-world data: Clinical evidence to guide management of diabetic macular oedema\",\"authors\":\"Pierre-Henry Gabrielle , Hemal Mehta , Daniel Barthelmes , Vincent Daien , Vuong Nguyen , Mark C. Gillies , Catherine P. Creuzot-Garcher\",\"doi\":\"10.1016/j.preteyeres.2023.101219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Randomised clinical trials (RCTs) are generally considered the gold-standard for providing scientific evidence for treatments' effectiveness and safety but their findings may not always be generalisable to the broader population treated in routine clinical practice. RCTs include highly selected patient populations that fit specific inclusion and exclusion criteria. Although they may have a lower level of certainty than RCTs on the evidence hierarchy, real-world data (RWD), such as observational studies, registries and databases, provide real-world evidence (RWE) that can complement RCTs. For example, RWE may help satisfy requirements for a new indication of an already approved drug and help us better understand long-term treatment effectiveness, safety and patterns of use in clinical practice. Many countries have set up registries, observational studies and databases containing information on patients with retinal diseases, such as diabetic macular oedema (DMO). These DMO RWD have produced significant clinical evidence in the past decade that has changed the management of DMO. RWD and medico-administrative databases are a useful resource to identify low frequency safety signals. They often have long-term follow-up with a large number of patients and minimal exclusion criteria. We will discuss improvements in healthcare information exchange technologies, such as blockchain technology and FHIR (Fast Healthcare Interoperability Resources), which will connect and extend databases already available. These registries can be linked with existing or emerging retinal imaging modalities using artificial intelligence to aid diagnosis, treatment decisions and provide prognostic information. The results of RCTs and RWE are combined to provide evidence-based guidelines.</p></div>\",\"PeriodicalId\":21159,\"journal\":{\"name\":\"Progress in Retinal and Eye Research\",\"volume\":\"97 \",\"pages\":\"Article 101219\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350946223000587/pdfft?md5=917c14928a76d6684eaa6820451c6d59&pid=1-s2.0-S1350946223000587-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Retinal and Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350946223000587\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946223000587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
From randomised controlled trials to real-world data: Clinical evidence to guide management of diabetic macular oedema
Randomised clinical trials (RCTs) are generally considered the gold-standard for providing scientific evidence for treatments' effectiveness and safety but their findings may not always be generalisable to the broader population treated in routine clinical practice. RCTs include highly selected patient populations that fit specific inclusion and exclusion criteria. Although they may have a lower level of certainty than RCTs on the evidence hierarchy, real-world data (RWD), such as observational studies, registries and databases, provide real-world evidence (RWE) that can complement RCTs. For example, RWE may help satisfy requirements for a new indication of an already approved drug and help us better understand long-term treatment effectiveness, safety and patterns of use in clinical practice. Many countries have set up registries, observational studies and databases containing information on patients with retinal diseases, such as diabetic macular oedema (DMO). These DMO RWD have produced significant clinical evidence in the past decade that has changed the management of DMO. RWD and medico-administrative databases are a useful resource to identify low frequency safety signals. They often have long-term follow-up with a large number of patients and minimal exclusion criteria. We will discuss improvements in healthcare information exchange technologies, such as blockchain technology and FHIR (Fast Healthcare Interoperability Resources), which will connect and extend databases already available. These registries can be linked with existing or emerging retinal imaging modalities using artificial intelligence to aid diagnosis, treatment decisions and provide prognostic information. The results of RCTs and RWE are combined to provide evidence-based guidelines.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.