{"title":"退火温度对二氧化锰薄膜的影响:形态、结构和电学性能","authors":"Stacy A. Lynrah;Lim Ying Ying;P. Chinnamuthu","doi":"10.1109/TSM.2023.3311091","DOIUrl":null,"url":null,"abstract":"Deposition of the manganese dioxide (MnO2) Thin Film (TF) was carried out by Electron beam (E-beam) evaporation technique. Structural, optical, and electrical characteristics reveal that MnO2 undergoes a phase transformation due to annealing temperature. Photoluminescence (PL) emission reveals the highest intensities at 500°C, indicating the least density of defects present in the sample. Moreover, the XRD analysis is very much in accordance with the optical and electrical results. The I-V characteristics show a significant enhancement at 500°C, with an improved Ilight/Idark ratio. The barrier height increases with the temperature while decreasing at 500°C due to decreased defects. At 500°C, a least ideality factor of value 1.5 is obtained. If the temperature exceeds 500°C, MnO2 breaks into other oxides like Mn2O3 and Mn3O4. Hence annealing at 500°C is an optimum temperature for better structural, optical, and electrical properties of MnO2 TF, showing great promise for future optoelectronics applications.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"36 4","pages":"666-672"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Annealing Temperature on MnO2 Thin Films: Morphological, Structural, and Electrical Properties\",\"authors\":\"Stacy A. Lynrah;Lim Ying Ying;P. Chinnamuthu\",\"doi\":\"10.1109/TSM.2023.3311091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deposition of the manganese dioxide (MnO2) Thin Film (TF) was carried out by Electron beam (E-beam) evaporation technique. Structural, optical, and electrical characteristics reveal that MnO2 undergoes a phase transformation due to annealing temperature. Photoluminescence (PL) emission reveals the highest intensities at 500°C, indicating the least density of defects present in the sample. Moreover, the XRD analysis is very much in accordance with the optical and electrical results. The I-V characteristics show a significant enhancement at 500°C, with an improved Ilight/Idark ratio. The barrier height increases with the temperature while decreasing at 500°C due to decreased defects. At 500°C, a least ideality factor of value 1.5 is obtained. If the temperature exceeds 500°C, MnO2 breaks into other oxides like Mn2O3 and Mn3O4. Hence annealing at 500°C is an optimum temperature for better structural, optical, and electrical properties of MnO2 TF, showing great promise for future optoelectronics applications.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"36 4\",\"pages\":\"666-672\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10238821/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10238821/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Impact of Annealing Temperature on MnO2 Thin Films: Morphological, Structural, and Electrical Properties
Deposition of the manganese dioxide (MnO2) Thin Film (TF) was carried out by Electron beam (E-beam) evaporation technique. Structural, optical, and electrical characteristics reveal that MnO2 undergoes a phase transformation due to annealing temperature. Photoluminescence (PL) emission reveals the highest intensities at 500°C, indicating the least density of defects present in the sample. Moreover, the XRD analysis is very much in accordance with the optical and electrical results. The I-V characteristics show a significant enhancement at 500°C, with an improved Ilight/Idark ratio. The barrier height increases with the temperature while decreasing at 500°C due to decreased defects. At 500°C, a least ideality factor of value 1.5 is obtained. If the temperature exceeds 500°C, MnO2 breaks into other oxides like Mn2O3 and Mn3O4. Hence annealing at 500°C is an optimum temperature for better structural, optical, and electrical properties of MnO2 TF, showing great promise for future optoelectronics applications.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.