{"title":"存在多种特征几何形状和模对模线宽变化的低k介电击穿建模","authors":"L. Milor","doi":"10.1109/MDT.2009.131","DOIUrl":null,"url":null,"abstract":"Backend geometries on chips contain a wide variety of features. This paper analyzes data from test structures implemented on a 45nm technology test chip to relate geometry to failure rate statistics for low-k dielectric breakdown. An area scaling model is constructed which accounts for the presence of die-to-die linewidth variation, and a methodology is proposed to determine if low-k materials satisfy lifetime requirements in the presence of die-to-die linewidth variation.","PeriodicalId":50392,"journal":{"name":"IEEE Design & Test of Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MDT.2009.131","citationCount":"0","resultStr":"{\"title\":\"Modeling Low-K Dielectric Breakdown in the Presence of Multiple Feature Geometries and Die-to-Die Linewidth Variation\",\"authors\":\"L. Milor\",\"doi\":\"10.1109/MDT.2009.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backend geometries on chips contain a wide variety of features. This paper analyzes data from test structures implemented on a 45nm technology test chip to relate geometry to failure rate statistics for low-k dielectric breakdown. An area scaling model is constructed which accounts for the presence of die-to-die linewidth variation, and a methodology is proposed to determine if low-k materials satisfy lifetime requirements in the presence of die-to-die linewidth variation.\",\"PeriodicalId\":50392,\"journal\":{\"name\":\"IEEE Design & Test of Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/MDT.2009.131\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Design & Test of Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDT.2009.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Design & Test of Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDT.2009.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Low-K Dielectric Breakdown in the Presence of Multiple Feature Geometries and Die-to-Die Linewidth Variation
Backend geometries on chips contain a wide variety of features. This paper analyzes data from test structures implemented on a 45nm technology test chip to relate geometry to failure rate statistics for low-k dielectric breakdown. An area scaling model is constructed which accounts for the presence of die-to-die linewidth variation, and a methodology is proposed to determine if low-k materials satisfy lifetime requirements in the presence of die-to-die linewidth variation.