{"title":"利用圆柱模态基函数对硅通孔互连进行电磁建模","authors":"K. Han, Madhavan Swaminathan, T. Bandyopadhyay","doi":"10.1109/TADVP.2010.2050769","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient method to model through-silicon via (TSV) interconnections, an essential building block for the realization of silicon-based 3-D systems. The proposed method results in equivalent network parameters that include the combined effect of conductor, insulator, and silicon substrate. Although the modeling method is based on solving Maxwell's equation in integral form, the method uses a small number of global modal basis functions and can be much faster than discretization-based integral-equation methods. Through comparison with 3-D full-wave simulations, this paper validates the accuracy and the efficiency of the proposed modeling method.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"804-817"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2050769","citationCount":"105","resultStr":"{\"title\":\"Electromagnetic Modeling of Through-Silicon Via (TSV) Interconnections Using Cylindrical Modal Basis Functions\",\"authors\":\"K. Han, Madhavan Swaminathan, T. Bandyopadhyay\",\"doi\":\"10.1109/TADVP.2010.2050769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient method to model through-silicon via (TSV) interconnections, an essential building block for the realization of silicon-based 3-D systems. The proposed method results in equivalent network parameters that include the combined effect of conductor, insulator, and silicon substrate. Although the modeling method is based on solving Maxwell's equation in integral form, the method uses a small number of global modal basis functions and can be much faster than discretization-based integral-equation methods. Through comparison with 3-D full-wave simulations, this paper validates the accuracy and the efficiency of the proposed modeling method.\",\"PeriodicalId\":55015,\"journal\":{\"name\":\"IEEE Transactions on Advanced Packaging\",\"volume\":\"33 1\",\"pages\":\"804-817\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TADVP.2010.2050769\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Advanced Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TADVP.2010.2050769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2010.2050769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromagnetic Modeling of Through-Silicon Via (TSV) Interconnections Using Cylindrical Modal Basis Functions
This paper proposes an efficient method to model through-silicon via (TSV) interconnections, an essential building block for the realization of silicon-based 3-D systems. The proposed method results in equivalent network parameters that include the combined effect of conductor, insulator, and silicon substrate. Although the modeling method is based on solving Maxwell's equation in integral form, the method uses a small number of global modal basis functions and can be much faster than discretization-based integral-equation methods. Through comparison with 3-D full-wave simulations, this paper validates the accuracy and the efficiency of the proposed modeling method.