集成微流控冷却和互连的2D和3D芯片

B. Dang, M. Bakir, D. Sekar, C. King, J. Meindl
{"title":"集成微流控冷却和互连的2D和3D芯片","authors":"B. Dang, M. Bakir, D. Sekar, C. King, J. Meindl","doi":"10.1109/TADVP.2009.2035999","DOIUrl":null,"url":null,"abstract":"Power dissipation in microprocessors is projected to reach a level that may necessitate chip-level liquid cooling in the near future. An on-chip microchannel heat sink can reduce the total thermal interfaces between an integrated circuit chip and the convective cooling medium and therefore yield smaller junction-to-ambient thermal resistance. This paper reports the fabrication, assembly, and testing of a silicon chip with complementary metal-oxide-semiconductor process compatible microchannel heat sink and thermofluidic chip input/output (I/O) interconnects fabricated using wafer-level batch processing. Ultra-small form factor, low-cost fabrication and assembly (system integration) are achieved for 2D and 3D chips, as the microchannel heat sink is fabricated directly on back-side of each chip. Through-wafer electrical and fluidic vias are used to interconnect the monolithically integrated microchannel heat sink to thermofluidic chip I/O interconnections. The feasibility of the novel fluidic I/O interconnect is demonstrated through preliminary thermal resistance measurements.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"79-87"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2009.2035999","citationCount":"116","resultStr":"{\"title\":\"Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips\",\"authors\":\"B. Dang, M. Bakir, D. Sekar, C. King, J. Meindl\",\"doi\":\"10.1109/TADVP.2009.2035999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power dissipation in microprocessors is projected to reach a level that may necessitate chip-level liquid cooling in the near future. An on-chip microchannel heat sink can reduce the total thermal interfaces between an integrated circuit chip and the convective cooling medium and therefore yield smaller junction-to-ambient thermal resistance. This paper reports the fabrication, assembly, and testing of a silicon chip with complementary metal-oxide-semiconductor process compatible microchannel heat sink and thermofluidic chip input/output (I/O) interconnects fabricated using wafer-level batch processing. Ultra-small form factor, low-cost fabrication and assembly (system integration) are achieved for 2D and 3D chips, as the microchannel heat sink is fabricated directly on back-side of each chip. Through-wafer electrical and fluidic vias are used to interconnect the monolithically integrated microchannel heat sink to thermofluidic chip I/O interconnections. The feasibility of the novel fluidic I/O interconnect is demonstrated through preliminary thermal resistance measurements.\",\"PeriodicalId\":55015,\"journal\":{\"name\":\"IEEE Transactions on Advanced Packaging\",\"volume\":\"33 1\",\"pages\":\"79-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TADVP.2009.2035999\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Advanced Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TADVP.2009.2035999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2009.2035999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

微处理器的功耗预计将在不久的将来达到一个可能需要芯片级液体冷却的水平。片上微通道散热器可以减少集成电路芯片和对流冷却介质之间的总热界面,因此产生更小的结对环境热阻。本文报道了一种硅芯片的制造、组装和测试,该芯片具有互补金属氧化物半导体工艺兼容的微通道散热器和热流控芯片输入/输出(I/O)互连,采用晶圆级批量加工制造。由于微通道散热器直接在每个芯片的背面制造,因此实现了2D和3D芯片的超小尺寸,低成本制造和组装(系统集成)。通过晶圆电气和流体通孔将单片集成微通道散热器互连到热流体芯片I/O互连。通过初步的热阻测量,证明了新型流体I/O互连的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips
Power dissipation in microprocessors is projected to reach a level that may necessitate chip-level liquid cooling in the near future. An on-chip microchannel heat sink can reduce the total thermal interfaces between an integrated circuit chip and the convective cooling medium and therefore yield smaller junction-to-ambient thermal resistance. This paper reports the fabrication, assembly, and testing of a silicon chip with complementary metal-oxide-semiconductor process compatible microchannel heat sink and thermofluidic chip input/output (I/O) interconnects fabricated using wafer-level batch processing. Ultra-small form factor, low-cost fabrication and assembly (system integration) are achieved for 2D and 3D chips, as the microchannel heat sink is fabricated directly on back-side of each chip. Through-wafer electrical and fluidic vias are used to interconnect the monolithically integrated microchannel heat sink to thermofluidic chip I/O interconnections. The feasibility of the novel fluidic I/O interconnect is demonstrated through preliminary thermal resistance measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Advanced Packaging
IEEE Transactions on Advanced Packaging 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
6 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信