$z$ -物理系统标识的域正交基函数

B. Nouri, R. Achar, M. Nakhla
{"title":"$z$ -物理系统标识的域正交基函数","authors":"B. Nouri, R. Achar, M. Nakhla","doi":"10.1109/TADVP.2009.2019965","DOIUrl":null,"url":null,"abstract":"In this paper, novel z-domain orthonormal basis functions are presented for physical systems identification. The new basis functions yield guaranteed real-valued time-domain responses for physical systems containing both real and complex-conjugate poles. Also, application of the new basis functions is demonstrated by adopting them for z-domain orthogonal vector fitting algorithm. Necessary theoretical foundations and validating examples are presented.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"293-307"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2009.2019965","citationCount":"16","resultStr":"{\"title\":\"$z$ -Domain Orthonormal Basis Functions for Physical System Identifications\",\"authors\":\"B. Nouri, R. Achar, M. Nakhla\",\"doi\":\"10.1109/TADVP.2009.2019965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, novel z-domain orthonormal basis functions are presented for physical systems identification. The new basis functions yield guaranteed real-valued time-domain responses for physical systems containing both real and complex-conjugate poles. Also, application of the new basis functions is demonstrated by adopting them for z-domain orthogonal vector fitting algorithm. Necessary theoretical foundations and validating examples are presented.\",\"PeriodicalId\":55015,\"journal\":{\"name\":\"IEEE Transactions on Advanced Packaging\",\"volume\":\"33 1\",\"pages\":\"293-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TADVP.2009.2019965\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Advanced Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TADVP.2009.2019965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2009.2019965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种新的用于物理系统辨识的z域正交基函数。新的基函数为包含实极和复共轭极点的物理系统提供了保证的实值时域响应。并通过将新基函数应用于z域正交向量拟合算法,说明了新基函数的应用。给出了必要的理论基础和验证实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$z$ -Domain Orthonormal Basis Functions for Physical System Identifications
In this paper, novel z-domain orthonormal basis functions are presented for physical systems identification. The new basis functions yield guaranteed real-valued time-domain responses for physical systems containing both real and complex-conjugate poles. Also, application of the new basis functions is demonstrated by adopting them for z-domain orthogonal vector fitting algorithm. Necessary theoretical foundations and validating examples are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Advanced Packaging
IEEE Transactions on Advanced Packaging 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
6 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信