Siri Narla, Piyush Kumar, Ann Franchesca Laguna, D. Reis, X. S. Hu, M. Niemier, A. Naeemi
{"title":"磁电三元内容可寻址存储器(TCAM)的建模与设计","authors":"Siri Narla, Piyush Kumar, Ann Franchesca Laguna, D. Reis, X. S. Hu, M. Niemier, A. Naeemi","doi":"10.1109/JXCDC.2022.3181925","DOIUrl":null,"url":null,"abstract":"This article proposes a novel magnetoelectric (ME) effect-based ternary content addressable memory (TCAM). The potential array-level write and search performances of the proposed ME-TCAM are studied using experimentally calibrated compact physical models and SPICE simulations. The voltage-controlled operation of the ME devices eliminates the large joule heating present in the current-controlled magnetic devices and their low-voltage write operation makes them more energy-efficient compared to static random access memory-based TCAMs (SRAM-TCAMs). The proposed compact TCAM outperforms its SRAM counterpart with <inline-formula> <tex-math notation=\"LaTeX\">$1.35\\times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$14.4\\times $ </tex-math></inline-formula> improvements in search and write energy, respectively, and its nonvolatility eliminates the standby leakage. We project an error rate below <inline-formula> <tex-math notation=\"LaTeX\">$10^{-4}$ </tex-math></inline-formula> while considering various sources of variation in magnetic and CMOS devices. At the application level, using memory-augmented neural networks (MANNs), we project a <inline-formula> <tex-math notation=\"LaTeX\">$2\\times $ </tex-math></inline-formula> energy-delay–area-product (EDAP) improvement over an SRAM-TCAM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling and Design for Magnetoelectric Ternary Content Addressable Memory (TCAM)\",\"authors\":\"Siri Narla, Piyush Kumar, Ann Franchesca Laguna, D. Reis, X. S. Hu, M. Niemier, A. Naeemi\",\"doi\":\"10.1109/JXCDC.2022.3181925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a novel magnetoelectric (ME) effect-based ternary content addressable memory (TCAM). The potential array-level write and search performances of the proposed ME-TCAM are studied using experimentally calibrated compact physical models and SPICE simulations. The voltage-controlled operation of the ME devices eliminates the large joule heating present in the current-controlled magnetic devices and their low-voltage write operation makes them more energy-efficient compared to static random access memory-based TCAMs (SRAM-TCAMs). The proposed compact TCAM outperforms its SRAM counterpart with <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1.35\\\\times $ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$14.4\\\\times $ </tex-math></inline-formula> improvements in search and write energy, respectively, and its nonvolatility eliminates the standby leakage. We project an error rate below <inline-formula> <tex-math notation=\\\"LaTeX\\\">$10^{-4}$ </tex-math></inline-formula> while considering various sources of variation in magnetic and CMOS devices. At the application level, using memory-augmented neural networks (MANNs), we project a <inline-formula> <tex-math notation=\\\"LaTeX\\\">$2\\\\times $ </tex-math></inline-formula> energy-delay–area-product (EDAP) improvement over an SRAM-TCAM.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JXCDC.2022.3181925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JXCDC.2022.3181925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Modeling and Design for Magnetoelectric Ternary Content Addressable Memory (TCAM)
This article proposes a novel magnetoelectric (ME) effect-based ternary content addressable memory (TCAM). The potential array-level write and search performances of the proposed ME-TCAM are studied using experimentally calibrated compact physical models and SPICE simulations. The voltage-controlled operation of the ME devices eliminates the large joule heating present in the current-controlled magnetic devices and their low-voltage write operation makes them more energy-efficient compared to static random access memory-based TCAMs (SRAM-TCAMs). The proposed compact TCAM outperforms its SRAM counterpart with $1.35\times $ and $14.4\times $ improvements in search and write energy, respectively, and its nonvolatility eliminates the standby leakage. We project an error rate below $10^{-4}$ while considering various sources of variation in magnetic and CMOS devices. At the application level, using memory-augmented neural networks (MANNs), we project a $2\times $ energy-delay–area-product (EDAP) improvement over an SRAM-TCAM.