Sayani Majumdar, Hongwei Tan, Qi Hang Qin, Sebastiaan van Dijken
{"title":"用于神经形态计算的高能效有机铁电隧道结忆阻器","authors":"Sayani Majumdar, Hongwei Tan, Qi Hang Qin, Sebastiaan van Dijken","doi":"10.1002/aelm.201800795","DOIUrl":null,"url":null,"abstract":"<p>Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"5 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aelm.201800795","citationCount":"119","resultStr":"{\"title\":\"Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing\",\"authors\":\"Sayani Majumdar, Hongwei Tan, Qi Hang Qin, Sebastiaan van Dijken\",\"doi\":\"10.1002/aelm.201800795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2019-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/aelm.201800795\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.201800795\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.201800795","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing
Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.