{"title":"高温液体导热系数:测量技术、理论认识和能源应用综述","authors":"Andrew Z. Zhao , Javier E. Garay","doi":"10.1016/j.pmatsci.2023.101180","DOIUrl":null,"url":null,"abstract":"<div><p><span>High temperature heat transfer fluids like molten salts and molten metals<span> will unlock the higher efficiency and lower cost of next generation grid scale energy sources such as concentrated solar power and advanced nuclear power plants. Their thermal conductivity will help determine how much heat power can be extracted from high temperature systems to do useful work. However, there is a large spread in liquid thermal conductivity data at high temperatures, and well-established, general models of liquid thermal conductivity across liquid classes and temperature ranges are lacking. In this work, we review experimental techniques used to measure liquid thermal conductivity – various steady-state, time-domain, and frequency-domain techniques – and we discuss strategies to minimize errors from convection, radiation, and corrosion that are amplified at high temperature. We classify liquids based on their dominant intermolecular interaction (simple, molecular, coulombic, or metallic) and examine their resulting short-range order that will inform models of </span></span>heat conduction<span><span> in liquids. Through the lens of intermolecular interactions and short-range order in liquids, we review previous analytical models of liquid thermal conductivity – modified kinetic gas, quasi-crystalline, and electron dominated models – and we compare their results with reliable experimental measurements of various types of liquids. The results suggest that modified kinetic gas models do not match experimental data for liquids. Quasi-crystalline models can accurately match some available experimental results of molten salts. We explore underlying similarities between various quasi-crystalline models that may be explained by frequency dependent vibrational modes in liquids. Electron transport is the dominant mechanism for thermal conductivity in molten metals. However </span>electrical conductivity measurements cannot be used directly for molten metal thermal conductivity measurement using the Wiedemann-Franz law because the Lorentz number varies with pressure, temperature and metal composition. In addition to analytical models we review molecular dynamics simulations, using equilibrium and non-equilibrium methods. The results show that MD simulations for molten salt thermal conductivity slightly overpredict experimentally measured reference values. These simulations can provide insights into the frequency-dependent behavior of vibrational modes in liquids. Lastly, we discuss future research directions of high temperature liquid thermal conductivity research and provide an outlook for applications for high temperature heat transfer fluids including use in power generation.</span></p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"139 ","pages":"Article 101180"},"PeriodicalIF":33.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High temperature liquid thermal conductivity: A review of measurement techniques, theoretical understanding, and energy applications\",\"authors\":\"Andrew Z. Zhao , Javier E. Garay\",\"doi\":\"10.1016/j.pmatsci.2023.101180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>High temperature heat transfer fluids like molten salts and molten metals<span> will unlock the higher efficiency and lower cost of next generation grid scale energy sources such as concentrated solar power and advanced nuclear power plants. Their thermal conductivity will help determine how much heat power can be extracted from high temperature systems to do useful work. However, there is a large spread in liquid thermal conductivity data at high temperatures, and well-established, general models of liquid thermal conductivity across liquid classes and temperature ranges are lacking. In this work, we review experimental techniques used to measure liquid thermal conductivity – various steady-state, time-domain, and frequency-domain techniques – and we discuss strategies to minimize errors from convection, radiation, and corrosion that are amplified at high temperature. We classify liquids based on their dominant intermolecular interaction (simple, molecular, coulombic, or metallic) and examine their resulting short-range order that will inform models of </span></span>heat conduction<span><span> in liquids. Through the lens of intermolecular interactions and short-range order in liquids, we review previous analytical models of liquid thermal conductivity – modified kinetic gas, quasi-crystalline, and electron dominated models – and we compare their results with reliable experimental measurements of various types of liquids. The results suggest that modified kinetic gas models do not match experimental data for liquids. Quasi-crystalline models can accurately match some available experimental results of molten salts. We explore underlying similarities between various quasi-crystalline models that may be explained by frequency dependent vibrational modes in liquids. Electron transport is the dominant mechanism for thermal conductivity in molten metals. However </span>electrical conductivity measurements cannot be used directly for molten metal thermal conductivity measurement using the Wiedemann-Franz law because the Lorentz number varies with pressure, temperature and metal composition. In addition to analytical models we review molecular dynamics simulations, using equilibrium and non-equilibrium methods. The results show that MD simulations for molten salt thermal conductivity slightly overpredict experimentally measured reference values. These simulations can provide insights into the frequency-dependent behavior of vibrational modes in liquids. Lastly, we discuss future research directions of high temperature liquid thermal conductivity research and provide an outlook for applications for high temperature heat transfer fluids including use in power generation.</span></p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"139 \",\"pages\":\"Article 101180\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642523001123\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642523001123","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High temperature liquid thermal conductivity: A review of measurement techniques, theoretical understanding, and energy applications
High temperature heat transfer fluids like molten salts and molten metals will unlock the higher efficiency and lower cost of next generation grid scale energy sources such as concentrated solar power and advanced nuclear power plants. Their thermal conductivity will help determine how much heat power can be extracted from high temperature systems to do useful work. However, there is a large spread in liquid thermal conductivity data at high temperatures, and well-established, general models of liquid thermal conductivity across liquid classes and temperature ranges are lacking. In this work, we review experimental techniques used to measure liquid thermal conductivity – various steady-state, time-domain, and frequency-domain techniques – and we discuss strategies to minimize errors from convection, radiation, and corrosion that are amplified at high temperature. We classify liquids based on their dominant intermolecular interaction (simple, molecular, coulombic, or metallic) and examine their resulting short-range order that will inform models of heat conduction in liquids. Through the lens of intermolecular interactions and short-range order in liquids, we review previous analytical models of liquid thermal conductivity – modified kinetic gas, quasi-crystalline, and electron dominated models – and we compare their results with reliable experimental measurements of various types of liquids. The results suggest that modified kinetic gas models do not match experimental data for liquids. Quasi-crystalline models can accurately match some available experimental results of molten salts. We explore underlying similarities between various quasi-crystalline models that may be explained by frequency dependent vibrational modes in liquids. Electron transport is the dominant mechanism for thermal conductivity in molten metals. However electrical conductivity measurements cannot be used directly for molten metal thermal conductivity measurement using the Wiedemann-Franz law because the Lorentz number varies with pressure, temperature and metal composition. In addition to analytical models we review molecular dynamics simulations, using equilibrium and non-equilibrium methods. The results show that MD simulations for molten salt thermal conductivity slightly overpredict experimentally measured reference values. These simulations can provide insights into the frequency-dependent behavior of vibrational modes in liquids. Lastly, we discuss future research directions of high temperature liquid thermal conductivity research and provide an outlook for applications for high temperature heat transfer fluids including use in power generation.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.