六聚假蛋白-4抗细菌膜模拟环境的机制研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
A. S. Vinutha, R. Rajasekaran
{"title":"六聚假蛋白-4抗细菌膜模拟环境的机制研究","authors":"A. S. Vinutha,&nbsp;R. Rajasekaran","doi":"10.1007/s10822-023-00516-2","DOIUrl":null,"url":null,"abstract":"<div><p>As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, <i>Pseudis paradoxa</i>, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with <i>E. coli</i> bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against <i>E. coli</i> bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment\",\"authors\":\"A. S. Vinutha,&nbsp;R. Rajasekaran\",\"doi\":\"10.1007/s10822-023-00516-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, <i>Pseudis paradoxa</i>, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with <i>E. coli</i> bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against <i>E. coli</i> bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00516-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00516-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

抗菌肽(Antimicrobial Peptides, AMPs)作为抗生素的替代品,具有阳离子性、两亲性和丰度等独特的性质,但抗菌肽对细菌膜的作用特性尚不明确。为了评估AMPs的结构稳定性和功能活性,研究了从水螅蛙(Pseudis paradoxa)中提取的伪肽AMPs (Pse-1、Pse-2、Pse-3和Pse-4)。我们研究了多肽的内部相互作用和热变性稳定性,以及它们的构象轨迹的几何参数和二级结构曲线。在此基础上筛选出多肽,并对高度稳定的多肽Pse-4进行膜模拟,观察Pse-4插入后形成的膜曲率变化。发现单个Pse-4引发膜破坏;然而,一种稳定的多聚体形式的Pse-4可能能够平衡螺旋-线圈转变并抵抗疏水膜环境。最终,六聚体Pse-4在膜上模拟表现出与大肠杆菌细菌膜形成氢键,从而形成跨膜孔,使多余的水分子进入膜壳,从而引起膜变形。本报告首次指出了Pse-4肽对细菌膜的作用机制。相对而言,Pse-4在桶状壁模型上作用于大肠杆菌菌膜;因此,它可以作为治疗多重耐药菌株的良好治疗支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment

Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment

As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信