用有边矩阵刻画广义逆

IF 1 3区 数学 Q1 MATHEMATICS
Kentaro Nomakuchi
{"title":"用有边矩阵刻画广义逆","authors":"Kentaro Nomakuchi","doi":"10.1016/0024-3795(80)90093-2","DOIUrl":null,"url":null,"abstract":"<div><p>A method to characterize the class of all generalized inverses of any given matrix <em>A</em> is considered. Given a matrix <em>A</em> and a nonsingular bordered matrix <em>T</em> of <em>A</em>, <span><span><span><math><mtext>T=</mtext><mtext>A</mtext><mtext>P</mtext><mtext>Q</mtext><mtext>R</mtext></math></span></span></span> the submatrix, corresponding to <em>A</em>, of <em>T</em><sup>-1</sup> is a generalized inverse of <em>A</em>, and conversely, any generalized inverse of <em>A</em> is obtainable by this method. There are different definitions of a generalized inverse, and the arguments are developed with the least restrictive definition. The characterization of the Moore-Penrose inverse, the most restrictive definition, is also considered.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"33 ","pages":"Pages 1-8"},"PeriodicalIF":1.0000,"publicationDate":"1980-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0024-3795(80)90093-2","citationCount":"11","resultStr":"{\"title\":\"On the characterization of generalized inverses by bordered matrices\",\"authors\":\"Kentaro Nomakuchi\",\"doi\":\"10.1016/0024-3795(80)90093-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A method to characterize the class of all generalized inverses of any given matrix <em>A</em> is considered. Given a matrix <em>A</em> and a nonsingular bordered matrix <em>T</em> of <em>A</em>, <span><span><span><math><mtext>T=</mtext><mtext>A</mtext><mtext>P</mtext><mtext>Q</mtext><mtext>R</mtext></math></span></span></span> the submatrix, corresponding to <em>A</em>, of <em>T</em><sup>-1</sup> is a generalized inverse of <em>A</em>, and conversely, any generalized inverse of <em>A</em> is obtainable by this method. There are different definitions of a generalized inverse, and the arguments are developed with the least restrictive definition. The characterization of the Moore-Penrose inverse, the most restrictive definition, is also considered.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"33 \",\"pages\":\"Pages 1-8\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"1980-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0024-3795(80)90093-2\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0024379580900932\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0024379580900932","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

考虑了一种刻画任意给定矩阵A的所有广义逆类的方法。给定一个矩阵a和a的非奇异有边矩阵T, T=APQR,则T-1对应的子矩阵a是a的广义逆,反过来,可以用该方法求出a的任何广义逆。广义逆有不同的定义,这些论证都是用限制最少的定义来展开的。Moore-Penrose逆(最严格的定义)的表征也被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the characterization of generalized inverses by bordered matrices

A method to characterize the class of all generalized inverses of any given matrix A is considered. Given a matrix A and a nonsingular bordered matrix T of A, T=APQR the submatrix, corresponding to A, of T-1 is a generalized inverse of A, and conversely, any generalized inverse of A is obtainable by this method. There are different definitions of a generalized inverse, and the arguments are developed with the least restrictive definition. The characterization of the Moore-Penrose inverse, the most restrictive definition, is also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信