组合非局部场论中的重整化:2-图的Hopf代数

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Johannes Thürigen
{"title":"组合非局部场论中的重整化:2-图的Hopf代数","authors":"Johannes Thürigen","doi":"10.1007/s11040-021-09390-6","DOIUrl":null,"url":null,"abstract":"<p>Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.</p>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11040-021-09390-6","citationCount":"5","resultStr":"{\"title\":\"Renormalization in Combinatorially Non-Local Field Theories: The Hopf Algebra of 2-Graphs\",\"authors\":\"Johannes Thürigen\",\"doi\":\"10.1007/s11040-021-09390-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.</p>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11040-021-09390-6\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09390-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09390-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

微扰量子场论中的重整化是基于费曼图的Hopf代数。这样做的先决条件是局部性。因此,人们可能会怀疑非局部场论,如矩阵场论或张量场论,不能从类似的代数理解中受益。在这里,我证明,与此相反,这类广泛的场论的微扰重整化以同样的方式建立在Hopf代数的基础上。它们的交互顶点具有图的结构。这给出了局部性的必要概念,并导致费曼图被定义为“2-图”,从而产生Hopf代数。这些结果为系统地研究微扰重整化和非微扰方面,例如Dyson-Schwinger方程,以及一些可能应用于随机几何和量子引力的组合非局部场论奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormalization in Combinatorially Non-Local Field Theories: The Hopf Algebra of 2-Graphs

Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信