{"title":"组合非局部场论中的重整化:2-图的Hopf代数","authors":"Johannes Thürigen","doi":"10.1007/s11040-021-09390-6","DOIUrl":null,"url":null,"abstract":"<p>Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.</p>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11040-021-09390-6","citationCount":"5","resultStr":"{\"title\":\"Renormalization in Combinatorially Non-Local Field Theories: The Hopf Algebra of 2-Graphs\",\"authors\":\"Johannes Thürigen\",\"doi\":\"10.1007/s11040-021-09390-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.</p>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11040-021-09390-6\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09390-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09390-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Renormalization in Combinatorially Non-Local Field Theories: The Hopf Algebra of 2-Graphs
Renormalization in perturbative quantum field theory is based on a Hopf algebra of Feynman diagrams. A precondition for this is locality. Therefore one might suspect that non-local field theories such as matrix or tensor field theories cannot benefit from a similar algebraic understanding. Here I show that, on the contrary, perturbative renormalization of a broad class of such field theories is based in the same way on a Hopf algebra. Their interaction vertices have the structure of graphs. This gives the necessary concept of locality and leads to Feynman diagrams defined as “2-graphs” which generate the Hopf algebra. These results set the stage for a systematic study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-Schwinger equations, for a number of combinatorially non-local field theories with possible applications to random geometry and quantum gravity.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.