孤子时空区域中非局部mKdV方程的长时间渐近行为

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Xuan Zhou, Engui Fan
{"title":"孤子时空区域中非局部mKdV方程的长时间渐近行为","authors":"Xuan Zhou,&nbsp;Engui Fan","doi":"10.1007/s11040-023-09445-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the long time asymptotic behavior for the Cauchy problem of an integrable real nonlocal mKdV equation with nonzero initial data in the solitonic regions </p><div><div><span>$$\\begin{aligned}&amp;q_t(x,t)-6\\sigma q(x,t)q(-x,-t)q_{x}(x,t)+q_{xxx}(x,t)=0, \\\\&amp;\\quad q(x,0)=q_{0}(x),\\ \\ \\lim _{x\\rightarrow \\pm \\infty } q_{0}(x)=q_{\\pm }, \\end{aligned}$$</span></div></div><p>where <span>\\(|q_{\\pm }|=1\\)</span> and <span>\\(q_{+}=\\delta q_{-}\\)</span>, <span>\\(\\sigma \\delta =-1\\)</span>. In our previous article, we have obtained long time asymptotics for the nonlocal mKdV equation in the solitonic region <span>\\(-6&lt;\\xi &lt;6\\)</span> with <span>\\(\\xi =\\frac{x}{t}\\)</span>. In this paper, we give the asymptotic expansion of the solution <i>q</i>(<i>x</i>, <i>t</i>) for other solitonic regions <span>\\(\\xi &lt;-6\\)</span> and <span>\\(\\xi &gt;6\\)</span>. Based on the Riemann–Hilbert formulation of the Cauchy problem, further using the <span>\\({\\bar{\\partial }}\\)</span> steepest descent method, we derive different long time asymptotic expansions of the solution <i>q</i>(<i>x</i>, <i>t</i>) in above two different space-time solitonic regions. In the region <span>\\(\\xi &lt;-6\\)</span>, phase function <span>\\(\\theta (z)\\)</span> has four stationary phase points on the <span>\\({\\mathbb {R}}\\)</span>. Correspondingly, <i>q</i>(<i>x</i>, <i>t</i>) can be characterized with an <span>\\({\\mathcal {N}}(\\Lambda )\\)</span>-soliton on discrete spectrum, the leading order term on continuous spectrum and an residual error term, which are affected by a function <span>\\(\\textrm{Im}\\nu (\\zeta _i)\\)</span>. In the region <span>\\(\\xi &gt;6\\)</span>, phase function <span>\\(\\theta (z)\\)</span> has four stationary phase points on <span>\\(i{\\mathbb {R}}\\)</span>, the corresponding asymptotic approximations can be characterized with an <span>\\({\\mathcal {N}}(\\Lambda )\\)</span>-soliton with diverse residual error order <span>\\({\\mathcal {O}}(t^{-1})\\)</span>.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-023-09445-w.pdf","citationCount":"1","resultStr":"{\"title\":\"Long Time Asymptotic Behavior for the Nonlocal mKdV Equation in Solitonic Space–Time Regions\",\"authors\":\"Xuan Zhou,&nbsp;Engui Fan\",\"doi\":\"10.1007/s11040-023-09445-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the long time asymptotic behavior for the Cauchy problem of an integrable real nonlocal mKdV equation with nonzero initial data in the solitonic regions </p><div><div><span>$$\\\\begin{aligned}&amp;q_t(x,t)-6\\\\sigma q(x,t)q(-x,-t)q_{x}(x,t)+q_{xxx}(x,t)=0, \\\\\\\\&amp;\\\\quad q(x,0)=q_{0}(x),\\\\ \\\\ \\\\lim _{x\\\\rightarrow \\\\pm \\\\infty } q_{0}(x)=q_{\\\\pm }, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(|q_{\\\\pm }|=1\\\\)</span> and <span>\\\\(q_{+}=\\\\delta q_{-}\\\\)</span>, <span>\\\\(\\\\sigma \\\\delta =-1\\\\)</span>. In our previous article, we have obtained long time asymptotics for the nonlocal mKdV equation in the solitonic region <span>\\\\(-6&lt;\\\\xi &lt;6\\\\)</span> with <span>\\\\(\\\\xi =\\\\frac{x}{t}\\\\)</span>. In this paper, we give the asymptotic expansion of the solution <i>q</i>(<i>x</i>, <i>t</i>) for other solitonic regions <span>\\\\(\\\\xi &lt;-6\\\\)</span> and <span>\\\\(\\\\xi &gt;6\\\\)</span>. Based on the Riemann–Hilbert formulation of the Cauchy problem, further using the <span>\\\\({\\\\bar{\\\\partial }}\\\\)</span> steepest descent method, we derive different long time asymptotic expansions of the solution <i>q</i>(<i>x</i>, <i>t</i>) in above two different space-time solitonic regions. In the region <span>\\\\(\\\\xi &lt;-6\\\\)</span>, phase function <span>\\\\(\\\\theta (z)\\\\)</span> has four stationary phase points on the <span>\\\\({\\\\mathbb {R}}\\\\)</span>. Correspondingly, <i>q</i>(<i>x</i>, <i>t</i>) can be characterized with an <span>\\\\({\\\\mathcal {N}}(\\\\Lambda )\\\\)</span>-soliton on discrete spectrum, the leading order term on continuous spectrum and an residual error term, which are affected by a function <span>\\\\(\\\\textrm{Im}\\\\nu (\\\\zeta _i)\\\\)</span>. In the region <span>\\\\(\\\\xi &gt;6\\\\)</span>, phase function <span>\\\\(\\\\theta (z)\\\\)</span> has four stationary phase points on <span>\\\\(i{\\\\mathbb {R}}\\\\)</span>, the corresponding asymptotic approximations can be characterized with an <span>\\\\({\\\\mathcal {N}}(\\\\Lambda )\\\\)</span>-soliton with diverse residual error order <span>\\\\({\\\\mathcal {O}}(t^{-1})\\\\)</span>.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-023-09445-w.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-023-09445-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09445-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了具有非零初始数据的可积实非局部mKdV方程在孤子区域$$\begin{aligned}&q_t(x,t)-6\sigma q(x,t)q(-x,-t)q_{x}(x,t)+q_{xxx}(x,t)=0, \\&\quad q(x,0)=q_{0}(x),\ \ \lim _{x\rightarrow \pm \infty } q_{0}(x)=q_{\pm }, \end{aligned}$$ (\(|q_{\pm }|=1\)和\(q_{+}=\delta q_{-}\), \(\sigma \delta =-1\))中的Cauchy问题的长时间渐近性。在之前的文章中,我们用\(\xi =\frac{x}{t}\)得到了孤子区域\(-6<\xi <6\)中非局域mKdV方程的长时间渐近性。本文给出了其它孤子区域\(\xi <-6\)和\(\xi >6\)解q(x, t)的渐近展开式。基于柯西问题的Riemann-Hilbert公式,进一步利用\({\bar{\partial }}\)最陡下降法,我们在上述两个不同的时空孤子区域中导出了解q(x, t)的不同长时间渐近展开式。在\(\xi <-6\)区域,相函数\(\theta (z)\)在\({\mathbb {R}}\)上有四个固定相点。相应地,q(x, t)可以用离散谱上的\({\mathcal {N}}(\Lambda )\) -孤子、连续谱上的首阶项和残差项来表征,它们受一个函数\(\textrm{Im}\nu (\zeta _i)\)的影响。在\(\xi >6\)区域中,相函数\(\theta (z)\)在\(i{\mathbb {R}}\)上有四个平稳相点,对应的渐近近似可以用一个残差阶不同的\({\mathcal {N}}(\Lambda )\) -孤子表示\({\mathcal {O}}(t^{-1})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long Time Asymptotic Behavior for the Nonlocal mKdV Equation in Solitonic Space–Time Regions

Long Time Asymptotic Behavior for the Nonlocal mKdV Equation in Solitonic Space–Time Regions

We study the long time asymptotic behavior for the Cauchy problem of an integrable real nonlocal mKdV equation with nonzero initial data in the solitonic regions

$$\begin{aligned}&q_t(x,t)-6\sigma q(x,t)q(-x,-t)q_{x}(x,t)+q_{xxx}(x,t)=0, \\&\quad q(x,0)=q_{0}(x),\ \ \lim _{x\rightarrow \pm \infty } q_{0}(x)=q_{\pm }, \end{aligned}$$

where \(|q_{\pm }|=1\) and \(q_{+}=\delta q_{-}\), \(\sigma \delta =-1\). In our previous article, we have obtained long time asymptotics for the nonlocal mKdV equation in the solitonic region \(-6<\xi <6\) with \(\xi =\frac{x}{t}\). In this paper, we give the asymptotic expansion of the solution q(xt) for other solitonic regions \(\xi <-6\) and \(\xi >6\). Based on the Riemann–Hilbert formulation of the Cauchy problem, further using the \({\bar{\partial }}\) steepest descent method, we derive different long time asymptotic expansions of the solution q(xt) in above two different space-time solitonic regions. In the region \(\xi <-6\), phase function \(\theta (z)\) has four stationary phase points on the \({\mathbb {R}}\). Correspondingly, q(xt) can be characterized with an \({\mathcal {N}}(\Lambda )\)-soliton on discrete spectrum, the leading order term on continuous spectrum and an residual error term, which are affected by a function \(\textrm{Im}\nu (\zeta _i)\). In the region \(\xi >6\), phase function \(\theta (z)\) has four stationary phase points on \(i{\mathbb {R}}\), the corresponding asymptotic approximations can be characterized with an \({\mathcal {N}}(\Lambda )\)-soliton with diverse residual error order \({\mathcal {O}}(t^{-1})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信