非自伴随哈密顿量的Heisenberg动力学:对称性和推导

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
F. Bagarello
{"title":"非自伴随哈密顿量的Heisenberg动力学:对称性和推导","authors":"F. Bagarello","doi":"10.1007/s11040-022-09443-4","DOIUrl":null,"url":null,"abstract":"<div><p>In some recent literature the role of non self-adjoint Hamiltonians, <span>\\(H\\ne H^\\dagger \\)</span>, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09443-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Heisenberg Dynamics for Non Self-Adjoint Hamiltonians: Symmetries and Derivations\",\"authors\":\"F. Bagarello\",\"doi\":\"10.1007/s11040-022-09443-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In some recent literature the role of non self-adjoint Hamiltonians, <span>\\\\(H\\\\ne H^\\\\dagger \\\\)</span>, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09443-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09443-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09443-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在最近的一些文献中,非自伴随哈密顿量\(H\ne H^\dagger \)的作用经常被认为与得失系统有关。大多数情况下,这些系统的动力学是用Schrödinger方程给出的。在本文中,我们将重点放在量子力学的类海森堡图像上,强调由自伴随哈密顿量驱动的系统与标准海森堡图像的(少数)相似和(许多)不同。特别讨论了运动的对称性、*导数和积分的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heisenberg Dynamics for Non Self-Adjoint Hamiltonians: Symmetries and Derivations

In some recent literature the role of non self-adjoint Hamiltonians, \(H\ne H^\dagger \), is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信