{"title":"非自伴随哈密顿量的Heisenberg动力学:对称性和推导","authors":"F. Bagarello","doi":"10.1007/s11040-022-09443-4","DOIUrl":null,"url":null,"abstract":"<div><p>In some recent literature the role of non self-adjoint Hamiltonians, <span>\\(H\\ne H^\\dagger \\)</span>, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09443-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Heisenberg Dynamics for Non Self-Adjoint Hamiltonians: Symmetries and Derivations\",\"authors\":\"F. Bagarello\",\"doi\":\"10.1007/s11040-022-09443-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In some recent literature the role of non self-adjoint Hamiltonians, <span>\\\\(H\\\\ne H^\\\\dagger \\\\)</span>, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09443-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09443-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09443-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Heisenberg Dynamics for Non Self-Adjoint Hamiltonians: Symmetries and Derivations
In some recent literature the role of non self-adjoint Hamiltonians, \(H\ne H^\dagger \), is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.