José Espírito Santo , Maria João Frade , Luís Pinto
{"title":"名称调用lambda演算中自然性的变化和解释及其推广应用","authors":"José Espírito Santo , Maria João Frade , Luís Pinto","doi":"10.1016/j.jlamp.2022.100830","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of intuitionistic sequent calculus, “naturality” means permutation-freeness (the terminology is essentially due to Mints). We study naturality in the context of the lambda-calculus with generalized applications and its multiary extension, to cover, under the Curry-Howard correspondence, proof systems ranging from natural deduction (with and without general elimination rules) to a fragment of sequent calculus with an iterable left-introduction rule, and which can still be recognized as a call-by-name lambda-calculus. In this context, naturality consists of a certain restricted use of generalized applications. We consider the further restriction obtained by the combination of naturality with normality w.r.t. the commutative conversion engendered by generalized applications. This combination sheds light on the interpretation of naturality as a vectorization mechanism, allowing a multitude of different ways of structuring lambda-terms, and the structuring of a multitude of interesting fragments of the systems under study. We also consider a relaxation of naturality, called weak naturality: this not only brings similar structural benefits, but also suggests a new “weak” system of natural deduction with generalized applications which is exempt from commutative conversions. In the end, we use all of this evidence as a stepping stone to propose a computational interpretation of generalized application (whether multiary or not, and without any restriction): it includes, alongside the argument(s) for the function, a <em>general list</em> – a new, very general, vectorization mechanism, that structures the continuation of the computation.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"131 ","pages":"Article 100830"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations and interpretations of naturality in call-by-name lambda-calculi with generalized applications\",\"authors\":\"José Espírito Santo , Maria João Frade , Luís Pinto\",\"doi\":\"10.1016/j.jlamp.2022.100830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of intuitionistic sequent calculus, “naturality” means permutation-freeness (the terminology is essentially due to Mints). We study naturality in the context of the lambda-calculus with generalized applications and its multiary extension, to cover, under the Curry-Howard correspondence, proof systems ranging from natural deduction (with and without general elimination rules) to a fragment of sequent calculus with an iterable left-introduction rule, and which can still be recognized as a call-by-name lambda-calculus. In this context, naturality consists of a certain restricted use of generalized applications. We consider the further restriction obtained by the combination of naturality with normality w.r.t. the commutative conversion engendered by generalized applications. This combination sheds light on the interpretation of naturality as a vectorization mechanism, allowing a multitude of different ways of structuring lambda-terms, and the structuring of a multitude of interesting fragments of the systems under study. We also consider a relaxation of naturality, called weak naturality: this not only brings similar structural benefits, but also suggests a new “weak” system of natural deduction with generalized applications which is exempt from commutative conversions. In the end, we use all of this evidence as a stepping stone to propose a computational interpretation of generalized application (whether multiary or not, and without any restriction): it includes, alongside the argument(s) for the function, a <em>general list</em> – a new, very general, vectorization mechanism, that structures the continuation of the computation.</p></div>\",\"PeriodicalId\":48797,\"journal\":{\"name\":\"Journal of Logical and Algebraic Methods in Programming\",\"volume\":\"131 \",\"pages\":\"Article 100830\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logical and Algebraic Methods in Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352220822000839\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220822000839","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Variations and interpretations of naturality in call-by-name lambda-calculi with generalized applications
In the context of intuitionistic sequent calculus, “naturality” means permutation-freeness (the terminology is essentially due to Mints). We study naturality in the context of the lambda-calculus with generalized applications and its multiary extension, to cover, under the Curry-Howard correspondence, proof systems ranging from natural deduction (with and without general elimination rules) to a fragment of sequent calculus with an iterable left-introduction rule, and which can still be recognized as a call-by-name lambda-calculus. In this context, naturality consists of a certain restricted use of generalized applications. We consider the further restriction obtained by the combination of naturality with normality w.r.t. the commutative conversion engendered by generalized applications. This combination sheds light on the interpretation of naturality as a vectorization mechanism, allowing a multitude of different ways of structuring lambda-terms, and the structuring of a multitude of interesting fragments of the systems under study. We also consider a relaxation of naturality, called weak naturality: this not only brings similar structural benefits, but also suggests a new “weak” system of natural deduction with generalized applications which is exempt from commutative conversions. In the end, we use all of this evidence as a stepping stone to propose a computational interpretation of generalized application (whether multiary or not, and without any restriction): it includes, alongside the argument(s) for the function, a general list – a new, very general, vectorization mechanism, that structures the continuation of the computation.
期刊介绍:
The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.