对环境负责的轻型乘用车设计和制造

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Glenn S. Daehn, Katrin E. Daehn, Oliver Kuttner
{"title":"对环境负责的轻型乘用车设计和制造","authors":"Glenn S. Daehn,&nbsp;Katrin E. Daehn,&nbsp;Oliver Kuttner","doi":"10.1007/s42154-023-00241-4","DOIUrl":null,"url":null,"abstract":"<div><p>The mass reduction of passenger vehicles has been a great focus of academic research and federal policy initiatives of the United States with coordinated funding efforts and even a focus of a Manufacturing USA Institute. The potential benefit of these programs can be described as modest from a societal point of view, for example reducing vehicle mass by up to 25% with modest cost implications (under $5 per pound saved) and the ability to implement with existing manufacturing methods. Much more aggressive reductions in greenhouse gas production are necessary and possible, while delivering the same service. This is demonstrated with a higher-level design thinking exercise on an environmentally responsible lightweight vehicle, leading to the following criteria: lightweight, low aerodynamic drag, long-lived (over 30 years and 2 million miles), adaptable, electric, and used in a shared manner on average over 8 h per day. With these specifications, passenger-mile demand may be met with around 1/10 of the current fleet. Such vehicles would likely have significantly different designs and construction than incumbent automobiles. It is likely future automotive production will be more analogous to current aircraft production with higher costs per pound and lower volumes, but with dramatically reduced financial and environmental cost per passenger mile, with less material per vehicle, and far less material required in the national or worldwide fleets. Subsidiary benefits of this vision include far fewer parking lots, greater accessibility to personal transportation, and improved pedestrian safety, while maintaining a vibrant and engaging economy. The systemic changes to the business models and research and development directions (including lightweight design and manufacturing) are discussed, which could bring forth far more sustainable personal transportation.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 3","pages":"300 - 310"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-023-00241-4.pdf","citationCount":"1","resultStr":"{\"title\":\"Environmentally Responsible Lightweight Passenger Vehicle Design and Manufacturing\",\"authors\":\"Glenn S. Daehn,&nbsp;Katrin E. Daehn,&nbsp;Oliver Kuttner\",\"doi\":\"10.1007/s42154-023-00241-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mass reduction of passenger vehicles has been a great focus of academic research and federal policy initiatives of the United States with coordinated funding efforts and even a focus of a Manufacturing USA Institute. The potential benefit of these programs can be described as modest from a societal point of view, for example reducing vehicle mass by up to 25% with modest cost implications (under $5 per pound saved) and the ability to implement with existing manufacturing methods. Much more aggressive reductions in greenhouse gas production are necessary and possible, while delivering the same service. This is demonstrated with a higher-level design thinking exercise on an environmentally responsible lightweight vehicle, leading to the following criteria: lightweight, low aerodynamic drag, long-lived (over 30 years and 2 million miles), adaptable, electric, and used in a shared manner on average over 8 h per day. With these specifications, passenger-mile demand may be met with around 1/10 of the current fleet. Such vehicles would likely have significantly different designs and construction than incumbent automobiles. It is likely future automotive production will be more analogous to current aircraft production with higher costs per pound and lower volumes, but with dramatically reduced financial and environmental cost per passenger mile, with less material per vehicle, and far less material required in the national or worldwide fleets. Subsidiary benefits of this vision include far fewer parking lots, greater accessibility to personal transportation, and improved pedestrian safety, while maintaining a vibrant and engaging economy. The systemic changes to the business models and research and development directions (including lightweight design and manufacturing) are discussed, which could bring forth far more sustainable personal transportation.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"6 3\",\"pages\":\"300 - 310\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-023-00241-4.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-023-00241-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00241-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

乘用车的大规模减少一直是美国学术研究和联邦政策举措的重点,资金投入协调一致,甚至是美国制造研究所的重点。从社会角度来看,这些计划的潜在效益可以被描述为适度的,例如,在适度的成本影响下(每磅节省不到5美元)将车辆质量减少25%,并且能够利用现有的制造方法实施。在提供同样服务的同时,更积极地减少温室气体产量是必要的,也是可能的。这可以通过对环境负责的轻型车辆进行更高层次的设计思维练习来证明,从而得出以下标准:重量轻、空气动力学阻力低、寿命长(超过30年和200万英里)、适应性强、电动,并且以平均每天8小时以上的共享方式使用。有了这些规范,目前车队的1/10左右可以满足乘客里程需求。这种车辆可能具有与现有汽车明显不同的设计和构造。未来的汽车生产可能会更类似于目前的飞机生产,每磅成本更高,产量更低,但每乘客英里的财务和环境成本大幅降低,每辆车的材料更少,国家或全球机队所需的材料也更少。这一愿景的次要好处包括减少停车场,增加个人交通的可及性,改善行人安全,同时保持充满活力和吸引力的经济。讨论了商业模式和研发方向(包括轻量化设计和制造)的系统性变化,这可能会带来更可持续的个人交通。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmentally Responsible Lightweight Passenger Vehicle Design and Manufacturing

The mass reduction of passenger vehicles has been a great focus of academic research and federal policy initiatives of the United States with coordinated funding efforts and even a focus of a Manufacturing USA Institute. The potential benefit of these programs can be described as modest from a societal point of view, for example reducing vehicle mass by up to 25% with modest cost implications (under $5 per pound saved) and the ability to implement with existing manufacturing methods. Much more aggressive reductions in greenhouse gas production are necessary and possible, while delivering the same service. This is demonstrated with a higher-level design thinking exercise on an environmentally responsible lightweight vehicle, leading to the following criteria: lightweight, low aerodynamic drag, long-lived (over 30 years and 2 million miles), adaptable, electric, and used in a shared manner on average over 8 h per day. With these specifications, passenger-mile demand may be met with around 1/10 of the current fleet. Such vehicles would likely have significantly different designs and construction than incumbent automobiles. It is likely future automotive production will be more analogous to current aircraft production with higher costs per pound and lower volumes, but with dramatically reduced financial and environmental cost per passenger mile, with less material per vehicle, and far less material required in the national or worldwide fleets. Subsidiary benefits of this vision include far fewer parking lots, greater accessibility to personal transportation, and improved pedestrian safety, while maintaining a vibrant and engaging economy. The systemic changes to the business models and research and development directions (including lightweight design and manufacturing) are discussed, which could bring forth far more sustainable personal transportation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信