Niankai Yang, Ziyou Song, Mohammad Reza Amini, Heath Hofmann
{"title":"基于卷积神经网络的并联电池内部短路检测","authors":"Niankai Yang, Ziyou Song, Mohammad Reza Amini, Heath Hofmann","doi":"10.1007/s42154-022-00180-6","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable and timely detection of an internal short circuit (ISC) in lithium-ion batteries is important to ensure safe and efficient operation. This paper investigates ISC detection of parallel-connected battery cells by considering cell non-uniformity and sensor limitation (i.e., no independent current sensors for individual cells in a parallel string). To characterize ISC-related signatures in battery string responses, an electro-thermal model of parallel-connected battery cells is first established that explicitly captures ISC. By analyzing the data generated from the electro-thermal model, the distribution of surface temperature among individual cells within the battery string is identified as an indicator for ISC detection under the constraints of sensor limitations. A convolutional neural network (CNN) is then designed to estimate the ISC resistance by using the cell surface temperature and the total capacity of the string as inputs. Based on the estimated ISC resistance from CNN, the strings are classified as faulty or non-faulty to guide the examination or replacement of the battery. The algorithm is evaluated in the presence of signal noises in terms of accuracy, false alarm rate, and missed detection rate, verifying the effectiveness and robustness of the proposed approach.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 2","pages":"107 - 120"},"PeriodicalIF":4.8000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00180-6.pdf","citationCount":"5","resultStr":"{\"title\":\"Internal Short Circuit Detection for Parallel-Connected Battery Cells Using Convolutional Neural Network\",\"authors\":\"Niankai Yang, Ziyou Song, Mohammad Reza Amini, Heath Hofmann\",\"doi\":\"10.1007/s42154-022-00180-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reliable and timely detection of an internal short circuit (ISC) in lithium-ion batteries is important to ensure safe and efficient operation. This paper investigates ISC detection of parallel-connected battery cells by considering cell non-uniformity and sensor limitation (i.e., no independent current sensors for individual cells in a parallel string). To characterize ISC-related signatures in battery string responses, an electro-thermal model of parallel-connected battery cells is first established that explicitly captures ISC. By analyzing the data generated from the electro-thermal model, the distribution of surface temperature among individual cells within the battery string is identified as an indicator for ISC detection under the constraints of sensor limitations. A convolutional neural network (CNN) is then designed to estimate the ISC resistance by using the cell surface temperature and the total capacity of the string as inputs. Based on the estimated ISC resistance from CNN, the strings are classified as faulty or non-faulty to guide the examination or replacement of the battery. The algorithm is evaluated in the presence of signal noises in terms of accuracy, false alarm rate, and missed detection rate, verifying the effectiveness and robustness of the proposed approach.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"5 2\",\"pages\":\"107 - 120\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00180-6.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00180-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00180-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Internal Short Circuit Detection for Parallel-Connected Battery Cells Using Convolutional Neural Network
Reliable and timely detection of an internal short circuit (ISC) in lithium-ion batteries is important to ensure safe and efficient operation. This paper investigates ISC detection of parallel-connected battery cells by considering cell non-uniformity and sensor limitation (i.e., no independent current sensors for individual cells in a parallel string). To characterize ISC-related signatures in battery string responses, an electro-thermal model of parallel-connected battery cells is first established that explicitly captures ISC. By analyzing the data generated from the electro-thermal model, the distribution of surface temperature among individual cells within the battery string is identified as an indicator for ISC detection under the constraints of sensor limitations. A convolutional neural network (CNN) is then designed to estimate the ISC resistance by using the cell surface temperature and the total capacity of the string as inputs. Based on the estimated ISC resistance from CNN, the strings are classified as faulty or non-faulty to guide the examination or replacement of the battery. The algorithm is evaluated in the presence of signal noises in terms of accuracy, false alarm rate, and missed detection rate, verifying the effectiveness and robustness of the proposed approach.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.