{"title":"极端驾驶条件下自动驾驶电动汽车路径跟踪的实时预测控制","authors":"Ningyuan Guo, Xudong Zhang, Yuan Zou","doi":"10.1007/s42154-022-00202-3","DOIUrl":null,"url":null,"abstract":"<div><p>A novel real-time predictive control strategy is proposed for path following (PF) and vehicle stability of autonomous electric vehicles under extreme drive conditions. The investigated vehicle configuration is a distributed drive electric vehicle, which allows to independently control the torques of each in-wheel motor (IWM) for superior stability, but bringing control complexities. The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model. For PF and direct yaw moment control, the nonlinear model predictive control (NMPC) strategy is developed to minimize PF tracking error and stabilize vehicle, outputting front tires’ lateral force and external yaw moment. To mitigate the calculation burdens, the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC. The relaxation function method is adopted to handle the inequality constraints. To prevent vehicle instability and improve steering capacity, the lateral velocity differential of the vehicle is considered in phase plane analysis, and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller. Additionally, the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue, and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically. The target lateral force is transformed as front steering angle command by the inversive tire model, and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization. The validations prove the effectiveness of the proposed strategy in improved steering capacity, desirable PF effects, vehicle stabilization, and real-time applicability.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 4","pages":"453 - 470"},"PeriodicalIF":4.8000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00202-3.pdf","citationCount":"5","resultStr":"{\"title\":\"Real-Time Predictive Control of Path Following to Stabilize Autonomous Electric Vehicles Under Extreme Drive Conditions\",\"authors\":\"Ningyuan Guo, Xudong Zhang, Yuan Zou\",\"doi\":\"10.1007/s42154-022-00202-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel real-time predictive control strategy is proposed for path following (PF) and vehicle stability of autonomous electric vehicles under extreme drive conditions. The investigated vehicle configuration is a distributed drive electric vehicle, which allows to independently control the torques of each in-wheel motor (IWM) for superior stability, but bringing control complexities. The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model. For PF and direct yaw moment control, the nonlinear model predictive control (NMPC) strategy is developed to minimize PF tracking error and stabilize vehicle, outputting front tires’ lateral force and external yaw moment. To mitigate the calculation burdens, the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC. The relaxation function method is adopted to handle the inequality constraints. To prevent vehicle instability and improve steering capacity, the lateral velocity differential of the vehicle is considered in phase plane analysis, and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller. Additionally, the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue, and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically. The target lateral force is transformed as front steering angle command by the inversive tire model, and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization. The validations prove the effectiveness of the proposed strategy in improved steering capacity, desirable PF effects, vehicle stabilization, and real-time applicability.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"5 4\",\"pages\":\"453 - 470\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00202-3.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00202-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00202-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-Time Predictive Control of Path Following to Stabilize Autonomous Electric Vehicles Under Extreme Drive Conditions
A novel real-time predictive control strategy is proposed for path following (PF) and vehicle stability of autonomous electric vehicles under extreme drive conditions. The investigated vehicle configuration is a distributed drive electric vehicle, which allows to independently control the torques of each in-wheel motor (IWM) for superior stability, but bringing control complexities. The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model. For PF and direct yaw moment control, the nonlinear model predictive control (NMPC) strategy is developed to minimize PF tracking error and stabilize vehicle, outputting front tires’ lateral force and external yaw moment. To mitigate the calculation burdens, the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC. The relaxation function method is adopted to handle the inequality constraints. To prevent vehicle instability and improve steering capacity, the lateral velocity differential of the vehicle is considered in phase plane analysis, and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller. Additionally, the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue, and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically. The target lateral force is transformed as front steering angle command by the inversive tire model, and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization. The validations prove the effectiveness of the proposed strategy in improved steering capacity, desirable PF effects, vehicle stabilization, and real-time applicability.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.