Bo Zhang, Dong Hao, Jinrui Chen, Caizhi Zhang, Bin Chen, Zhongbao Wei, Yaxiong Wang
{"title":"基于喷射器循环的车用PEM燃料电池阳极系统建模与分散预测控制","authors":"Bo Zhang, Dong Hao, Jinrui Chen, Caizhi Zhang, Bin Chen, Zhongbao Wei, Yaxiong Wang","doi":"10.1007/s42154-022-00190-4","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic response of fuel cell vehicle is greatly affected by the pressure of reactants. Besides, the pressure difference between anode and cathode will also cause mechanical damage to proton exchange membrane. For maintaining the relative stability of anode pressure, this study proposes a decentralized model predictive controller (DMPC) to control the anodic supply system composed of a feeding and returning ejector assembly. Considering the important influence of load current on the system, the piecewise linearization approach and state space with current-induced disturbance compensation are comparatively analyzed. Then, an innovative switching strategy is proposed to prevent frequent switching of the sub-model-based controllers and to ensure the most appropriate predictive model is applied. Finally, simulation results demonstrate the better stability and robustness of the proposed control schemes compared with the traditional proportion integration differentiation controller under the step load current, variable target and purge disturbance conditions. In particular, in the case of the DC bus load current of a fuel cell hybrid vehicle, the DMPC controller with current-induced disturbance compensation has better stability and target tracking performance with an average error of 0.15 kPa and root mean square error of 1.07 kPa.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 3","pages":"333 - 345"},"PeriodicalIF":4.8000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00190-4.pdf","citationCount":"9","resultStr":"{\"title\":\"Modeling and Decentralized Predictive Control of Ejector Circulation-Based PEM Fuel Cell Anode System for Vehicular Application\",\"authors\":\"Bo Zhang, Dong Hao, Jinrui Chen, Caizhi Zhang, Bin Chen, Zhongbao Wei, Yaxiong Wang\",\"doi\":\"10.1007/s42154-022-00190-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic response of fuel cell vehicle is greatly affected by the pressure of reactants. Besides, the pressure difference between anode and cathode will also cause mechanical damage to proton exchange membrane. For maintaining the relative stability of anode pressure, this study proposes a decentralized model predictive controller (DMPC) to control the anodic supply system composed of a feeding and returning ejector assembly. Considering the important influence of load current on the system, the piecewise linearization approach and state space with current-induced disturbance compensation are comparatively analyzed. Then, an innovative switching strategy is proposed to prevent frequent switching of the sub-model-based controllers and to ensure the most appropriate predictive model is applied. Finally, simulation results demonstrate the better stability and robustness of the proposed control schemes compared with the traditional proportion integration differentiation controller under the step load current, variable target and purge disturbance conditions. In particular, in the case of the DC bus load current of a fuel cell hybrid vehicle, the DMPC controller with current-induced disturbance compensation has better stability and target tracking performance with an average error of 0.15 kPa and root mean square error of 1.07 kPa.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"5 3\",\"pages\":\"333 - 345\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00190-4.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00190-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00190-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling and Decentralized Predictive Control of Ejector Circulation-Based PEM Fuel Cell Anode System for Vehicular Application
The dynamic response of fuel cell vehicle is greatly affected by the pressure of reactants. Besides, the pressure difference between anode and cathode will also cause mechanical damage to proton exchange membrane. For maintaining the relative stability of anode pressure, this study proposes a decentralized model predictive controller (DMPC) to control the anodic supply system composed of a feeding and returning ejector assembly. Considering the important influence of load current on the system, the piecewise linearization approach and state space with current-induced disturbance compensation are comparatively analyzed. Then, an innovative switching strategy is proposed to prevent frequent switching of the sub-model-based controllers and to ensure the most appropriate predictive model is applied. Finally, simulation results demonstrate the better stability and robustness of the proposed control schemes compared with the traditional proportion integration differentiation controller under the step load current, variable target and purge disturbance conditions. In particular, in the case of the DC bus load current of a fuel cell hybrid vehicle, the DMPC controller with current-induced disturbance compensation has better stability and target tracking performance with an average error of 0.15 kPa and root mean square error of 1.07 kPa.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.