Dan Wu, Xing Liu, Bin Bai, Jianwu Li, Ren Wang, Yin Zhang, Qiyun Deng, Huang Huang, Jun Wu
{"title":"利用近红外光谱结合化学计量学方法确定中国水稻的耕作方法和地理来源","authors":"Dan Wu, Xing Liu, Bin Bai, Jianwu Li, Ren Wang, Yin Zhang, Qiyun Deng, Huang Huang, Jun Wu","doi":"10.1007/s11694-023-01901-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study was conducted to develop fast and nondestructive models for the discrimination of different farming methods and to determine the geographical origin of rice samples from different administrative regions in China using near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to build the NIR spectral models. Norris smoothing derivative (NSD) and multiplicative scatter correction (MSC) were used as preprocessing methods to reduce the spectral noise and enhance effective information. The results show that it was difficult to distinguish the farming methods with the original spectra plots and PCA score plots except for the rice samples from Heilongjiang Province. In addition, a PLS-DA model combined with NSD preprocessing provided the optimal predictive accuracy of 89.7% for the identification of different farming methods. NSD or MSC preprocessing combined with PLS-DA models provided the best discrimination of the origin traceability. The total accuracy of Northeast China rice samples was 100%, and of the South, East, Central and Southwest China rice samples was 98.2%. The total accuracy of Heilongjiang, Anhui, Jiangsu, Hubei, and Sichuan Provinces were 100%, 98.8%, 95.3%, 95.3%, and 93.6%, respectively. These indicate that NIR combined with PLS-DA and NSD or MSC preprocessing can provide a powerful method to distinguish the different farming methods and geographical origin of Chinese rice.</p></div>","PeriodicalId":48735,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"17 4","pages":"3695 - 3708"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determining farming methods and geographical origin of chinese rice using NIR combined with chemometrics methods\",\"authors\":\"Dan Wu, Xing Liu, Bin Bai, Jianwu Li, Ren Wang, Yin Zhang, Qiyun Deng, Huang Huang, Jun Wu\",\"doi\":\"10.1007/s11694-023-01901-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study was conducted to develop fast and nondestructive models for the discrimination of different farming methods and to determine the geographical origin of rice samples from different administrative regions in China using near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to build the NIR spectral models. Norris smoothing derivative (NSD) and multiplicative scatter correction (MSC) were used as preprocessing methods to reduce the spectral noise and enhance effective information. The results show that it was difficult to distinguish the farming methods with the original spectra plots and PCA score plots except for the rice samples from Heilongjiang Province. In addition, a PLS-DA model combined with NSD preprocessing provided the optimal predictive accuracy of 89.7% for the identification of different farming methods. NSD or MSC preprocessing combined with PLS-DA models provided the best discrimination of the origin traceability. The total accuracy of Northeast China rice samples was 100%, and of the South, East, Central and Southwest China rice samples was 98.2%. The total accuracy of Heilongjiang, Anhui, Jiangsu, Hubei, and Sichuan Provinces were 100%, 98.8%, 95.3%, 95.3%, and 93.6%, respectively. These indicate that NIR combined with PLS-DA and NSD or MSC preprocessing can provide a powerful method to distinguish the different farming methods and geographical origin of Chinese rice.</p></div>\",\"PeriodicalId\":48735,\"journal\":{\"name\":\"Journal of Food Measurement and Characterization\",\"volume\":\"17 4\",\"pages\":\"3695 - 3708\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Measurement and Characterization\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11694-023-01901-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-023-01901-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Determining farming methods and geographical origin of chinese rice using NIR combined with chemometrics methods
This study was conducted to develop fast and nondestructive models for the discrimination of different farming methods and to determine the geographical origin of rice samples from different administrative regions in China using near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to build the NIR spectral models. Norris smoothing derivative (NSD) and multiplicative scatter correction (MSC) were used as preprocessing methods to reduce the spectral noise and enhance effective information. The results show that it was difficult to distinguish the farming methods with the original spectra plots and PCA score plots except for the rice samples from Heilongjiang Province. In addition, a PLS-DA model combined with NSD preprocessing provided the optimal predictive accuracy of 89.7% for the identification of different farming methods. NSD or MSC preprocessing combined with PLS-DA models provided the best discrimination of the origin traceability. The total accuracy of Northeast China rice samples was 100%, and of the South, East, Central and Southwest China rice samples was 98.2%. The total accuracy of Heilongjiang, Anhui, Jiangsu, Hubei, and Sichuan Provinces were 100%, 98.8%, 95.3%, 95.3%, and 93.6%, respectively. These indicate that NIR combined with PLS-DA and NSD or MSC preprocessing can provide a powerful method to distinguish the different farming methods and geographical origin of Chinese rice.
期刊介绍:
This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance.
The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.