RAMP:用于分布式深度学习系统的扁平纳秒光网络和MPI操作

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alessandro Ottino, Joshua Benjamin , Georgios Zervas
{"title":"RAMP:用于分布式深度学习系统的扁平纳秒光网络和MPI操作","authors":"Alessandro Ottino,&nbsp;Joshua Benjamin ,&nbsp;Georgios Zervas","doi":"10.1016/j.osn.2023.100761","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical </span>network architecture<span><span> with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8 Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x </span>MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171</span></span><span><math><mo>×</mo></math></span> speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16<span><math><mo>×</mo></math></span> and 7.8-58<span><math><mo>×</mo></math></span> reduction in Megatron and DLRM training time respectively while offering 38-47<span><math><mo>×</mo></math></span> and 6.4-26.5<span><math><mo>×</mo></math></span> improvement in energy consumption and cost respectively.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100761"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAMP: A flat nanosecond optical network and MPI operations for distributed deep learning systems\",\"authors\":\"Alessandro Ottino,&nbsp;Joshua Benjamin ,&nbsp;Georgios Zervas\",\"doi\":\"10.1016/j.osn.2023.100761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical </span>network architecture<span><span> with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8 Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x </span>MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171</span></span><span><math><mo>×</mo></math></span> speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16<span><math><mo>×</mo></math></span> and 7.8-58<span><math><mo>×</mo></math></span> reduction in Megatron and DLRM training time respectively while offering 38-47<span><math><mo>×</mo></math></span> and 6.4-26.5<span><math><mo>×</mo></math></span> improvement in energy consumption and cost respectively.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"51 \",\"pages\":\"Article 100761\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427723000322\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

分布式深度学习(DDL)系统在很大程度上依赖于网络性能。当前的电子分组交换(EPS)网络架构和技术受到可变直径拓扑、低平分带宽和过度订阅的影响,影响通信和集体操作的完成时间。我们介绍了一种近六倍、全平分带宽、全对所有、单跳、具有纳秒重配置的全光网络架构,称为RAMP,它支持大规模分布式和并行计算系统(最多65536个节点,每个节点12.8 Tbps)。首次提出了一种定制的RAMP-x MPI策略和网络转码器,以无调度和无争用的方式在光电路交换(OCS)网络上运行MPI集体操作。与现实的EPS和OCS相比,RAMP在所有MPI操作中的完成时间提高了7.6-171倍。它还可以将威震天和DLRM的训练时间分别减少1.3-16倍和7.8-58倍,同时在能耗和成本方面分别提高38-47倍和6.4-26.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAMP: A flat nanosecond optical network and MPI operations for distributed deep learning systems

Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical network architecture with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8 Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171× speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16× and 7.8-58× reduction in Megatron and DLRM training time respectively while offering 38-47× and 6.4-26.5× improvement in energy consumption and cost respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信