{"title":"一种基于区域的动态槽位调度的车载光骨干网架构","authors":"Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata","doi":"10.1016/j.osn.2023.100753","DOIUrl":null,"url":null,"abstract":"<div><p>As Ethernet has a large bandwidth capacity, it is commonly proposed as a backbone for future intra-vehicle networks. However, satisfying the severe hardware reliability requirements of intra-vehicle networks while providing high-bandwidth and low latency by Ethernet may be costly. As a solution, we propose a novel optical intra-vehicle backbone network architecture<span> that may have a lower cost and higher reliability in terms of hardware when compared to Ethernet. However, unlike traditional optical Ethernet architectures, only a single master node has transmitter laser diodes in the backbone of our architecture, so the gateway nodes cannot generate and send packets to the backbone links directly. As the gateways cannot inform the master node and request a slot when they have a new packet to send, a slot scheduling algorithm<span> with polling is necessary to detect and transfer the new packets in the gateways, which may cause higher transmission delays compared to Ethernet. In this paper, we present our optical intra-vehicle backbone network architecture and propose two slot scheduling algorithms. We show that using a dynamic slot scheduling algorithm decreases packet delays<span> when compared to fixed periodic slot scheduling in our architecture. We also evaluate the total delays including traffic shaping and processing delays in an optical TSN Ethernet backbone architecture as a reference. We show that the extra delays due to slot scheduling in our architecture may be negligibly low when compared with traffic shaping and processing delays.</span></span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"50 ","pages":"Article 100753"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zone-based optical intra-vehicle backbone network architecture with dynamic slot scheduling\",\"authors\":\"Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata\",\"doi\":\"10.1016/j.osn.2023.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As Ethernet has a large bandwidth capacity, it is commonly proposed as a backbone for future intra-vehicle networks. However, satisfying the severe hardware reliability requirements of intra-vehicle networks while providing high-bandwidth and low latency by Ethernet may be costly. As a solution, we propose a novel optical intra-vehicle backbone network architecture<span> that may have a lower cost and higher reliability in terms of hardware when compared to Ethernet. However, unlike traditional optical Ethernet architectures, only a single master node has transmitter laser diodes in the backbone of our architecture, so the gateway nodes cannot generate and send packets to the backbone links directly. As the gateways cannot inform the master node and request a slot when they have a new packet to send, a slot scheduling algorithm<span> with polling is necessary to detect and transfer the new packets in the gateways, which may cause higher transmission delays compared to Ethernet. In this paper, we present our optical intra-vehicle backbone network architecture and propose two slot scheduling algorithms. We show that using a dynamic slot scheduling algorithm decreases packet delays<span> when compared to fixed periodic slot scheduling in our architecture. We also evaluate the total delays including traffic shaping and processing delays in an optical TSN Ethernet backbone architecture as a reference. We show that the extra delays due to slot scheduling in our architecture may be negligibly low when compared with traffic shaping and processing delays.</span></span></span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"50 \",\"pages\":\"Article 100753\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427723000243\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000243","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A zone-based optical intra-vehicle backbone network architecture with dynamic slot scheduling
As Ethernet has a large bandwidth capacity, it is commonly proposed as a backbone for future intra-vehicle networks. However, satisfying the severe hardware reliability requirements of intra-vehicle networks while providing high-bandwidth and low latency by Ethernet may be costly. As a solution, we propose a novel optical intra-vehicle backbone network architecture that may have a lower cost and higher reliability in terms of hardware when compared to Ethernet. However, unlike traditional optical Ethernet architectures, only a single master node has transmitter laser diodes in the backbone of our architecture, so the gateway nodes cannot generate and send packets to the backbone links directly. As the gateways cannot inform the master node and request a slot when they have a new packet to send, a slot scheduling algorithm with polling is necessary to detect and transfer the new packets in the gateways, which may cause higher transmission delays compared to Ethernet. In this paper, we present our optical intra-vehicle backbone network architecture and propose two slot scheduling algorithms. We show that using a dynamic slot scheduling algorithm decreases packet delays when compared to fixed periodic slot scheduling in our architecture. We also evaluate the total delays including traffic shaping and processing delays in an optical TSN Ethernet backbone architecture as a reference. We show that the extra delays due to slot scheduling in our architecture may be negligibly low when compared with traffic shaping and processing delays.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks