{"title":"用于光分组转发引擎的可扩展多播控制平面:一种多路SVRF方法","authors":"Wen-Kang Jia , Yaw-Chung Chen , Zhu Jin , Weihao Geng","doi":"10.1016/j.osn.2022.100713","DOIUrl":null,"url":null,"abstract":"<div><p><span>In control-plane of optical packet forwarding<span> engines (OPFEs), the group-membership query algorithm determines the egress through which a packet should be forwarded. To implement a high-performance multicast-enabled switch/router, a super-fast group-membership query algorithm is the key element within the PFEs which require the following essential properties: high link-bandwidth, high port-density, high forwarding speed, high scalability, and affordable cost. Current group-membership query approaches such as Bloom filter (BF) and Scalar-Pair Vectors Routing and Forwarding (SVRF) still suffer from serious weaknesses in terms of the space/time inefficiency, false-positive error, and low maintainability, etc. To accommodate these weaknesses, we propose an improved forwarding scheme–</span></span><em>M</em>-way Scaler-matrix and Vectors Routing and Forwarding (<em>M</em>-way SVRF) by re-examining the idea of the original SVRF. The M-way SVRF divides a <em>ρ</em><span><span>-bit port identifier into M-sub-blocks in the memory unit, thus element's keys belonging to distinct sub-blocks are able to reuse relatively smaller identical prime keys. Compared to previous works, simulation results show that the membership queries can be partitioned to leverage task parallelism, and better performance in the aspects of memory consumption and </span>computational complexity, especially when the port-density of optical PFE is sufficiently high.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"47 ","pages":"Article 100713"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable multicast control-plane for optical packet forwarding engines: A multiway SVRF approach\",\"authors\":\"Wen-Kang Jia , Yaw-Chung Chen , Zhu Jin , Weihao Geng\",\"doi\":\"10.1016/j.osn.2022.100713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In control-plane of optical packet forwarding<span> engines (OPFEs), the group-membership query algorithm determines the egress through which a packet should be forwarded. To implement a high-performance multicast-enabled switch/router, a super-fast group-membership query algorithm is the key element within the PFEs which require the following essential properties: high link-bandwidth, high port-density, high forwarding speed, high scalability, and affordable cost. Current group-membership query approaches such as Bloom filter (BF) and Scalar-Pair Vectors Routing and Forwarding (SVRF) still suffer from serious weaknesses in terms of the space/time inefficiency, false-positive error, and low maintainability, etc. To accommodate these weaknesses, we propose an improved forwarding scheme–</span></span><em>M</em>-way Scaler-matrix and Vectors Routing and Forwarding (<em>M</em>-way SVRF) by re-examining the idea of the original SVRF. The M-way SVRF divides a <em>ρ</em><span><span>-bit port identifier into M-sub-blocks in the memory unit, thus element's keys belonging to distinct sub-blocks are able to reuse relatively smaller identical prime keys. Compared to previous works, simulation results show that the membership queries can be partitioned to leverage task parallelism, and better performance in the aspects of memory consumption and </span>computational complexity, especially when the port-density of optical PFE is sufficiently high.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"47 \",\"pages\":\"Article 100713\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427722000492\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427722000492","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Scalable multicast control-plane for optical packet forwarding engines: A multiway SVRF approach
In control-plane of optical packet forwarding engines (OPFEs), the group-membership query algorithm determines the egress through which a packet should be forwarded. To implement a high-performance multicast-enabled switch/router, a super-fast group-membership query algorithm is the key element within the PFEs which require the following essential properties: high link-bandwidth, high port-density, high forwarding speed, high scalability, and affordable cost. Current group-membership query approaches such as Bloom filter (BF) and Scalar-Pair Vectors Routing and Forwarding (SVRF) still suffer from serious weaknesses in terms of the space/time inefficiency, false-positive error, and low maintainability, etc. To accommodate these weaknesses, we propose an improved forwarding scheme–M-way Scaler-matrix and Vectors Routing and Forwarding (M-way SVRF) by re-examining the idea of the original SVRF. The M-way SVRF divides a ρ-bit port identifier into M-sub-blocks in the memory unit, thus element's keys belonging to distinct sub-blocks are able to reuse relatively smaller identical prime keys. Compared to previous works, simulation results show that the membership queries can be partitioned to leverage task parallelism, and better performance in the aspects of memory consumption and computational complexity, especially when the port-density of optical PFE is sufficiently high.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks