适用于6 GHz以下5G终端的紧凑型双频MIMO天线

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guiting Dong, Jianlin Huang, Simin Lin, Zhizhou Chen, Gui Liu
{"title":"适用于6 GHz以下5G终端的紧凑型双频MIMO天线","authors":"Guiting Dong, Jianlin Huang, Simin Lin, Zhizhou Chen, Gui Liu","doi":"10.26866/jees.2022.5.r.128","DOIUrl":null,"url":null,"abstract":"In this paper, a dual-band multiple-input-multiple-output (MIMO) antenna is proposed for fifth-generation (5G) wireless communication terminals. The measured -10 dB impedance bandwidths of 380 MHz (3.34–3.72 GHz) and 560 MHz (4.57–5.13 GHz) can cover the 3.4–3.6 GHz and 4.8–5 GHz 5G bands. The single antenna element of this proposed MIMO is composed of an F-shaped feed strip and an inverted L-shaped radiation strip. A defected ground structure is employed to obtain a good isolation performance, whereby the measured isolation between the antenna elements is observed to be larger than 23 dB. The measured total radiation efficiencies at 3.5 GHz and 4.9 GHz are 76.65% and 71.93%, respectively. Besides, the calculated envelope correlation coefficients (ECC) are less than 0.00125 and 0.01164 at the low-frequency and high-frequency bands, respectively. Furthermore, the specific absorption ratio (SAR) analysis of the antenna verifies that it qualifies for 5G terminals.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Compact Dual-Band MIMO Antenna for Sub-6 GHz 5G Terminals\",\"authors\":\"Guiting Dong, Jianlin Huang, Simin Lin, Zhizhou Chen, Gui Liu\",\"doi\":\"10.26866/jees.2022.5.r.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dual-band multiple-input-multiple-output (MIMO) antenna is proposed for fifth-generation (5G) wireless communication terminals. The measured -10 dB impedance bandwidths of 380 MHz (3.34–3.72 GHz) and 560 MHz (4.57–5.13 GHz) can cover the 3.4–3.6 GHz and 4.8–5 GHz 5G bands. The single antenna element of this proposed MIMO is composed of an F-shaped feed strip and an inverted L-shaped radiation strip. A defected ground structure is employed to obtain a good isolation performance, whereby the measured isolation between the antenna elements is observed to be larger than 23 dB. The measured total radiation efficiencies at 3.5 GHz and 4.9 GHz are 76.65% and 71.93%, respectively. Besides, the calculated envelope correlation coefficients (ECC) are less than 0.00125 and 0.01164 at the low-frequency and high-frequency bands, respectively. Furthermore, the specific absorption ratio (SAR) analysis of the antenna verifies that it qualifies for 5G terminals.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2022.5.r.128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.5.r.128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种用于第五代(5G)无线通信终端的双频带多输入多输出(MIMO)天线。测量的380 MHz(3.34–3.72 GHz)和560 MHz(4.57–5.13 GHz)的-10 dB阻抗带宽可以覆盖3.4–3.6 GHz和4.8–5 GHz 5G频段。该MIMO的单个天线元件由F形馈电带和倒L形辐射带组成。采用有缺陷的接地结构来获得良好的隔离性能,由此观察到天线元件之间的测量隔离大于23dB。测量的3.5GHz和4.9GHz的总辐射效率分别为76.65%和71.93%。此外,计算出的包络相关系数(ECC)在低频带和高频带分别小于0.00125和0.01164。此外,该天线的比吸收比(SAR)分析验证了它符合5G终端的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compact Dual-Band MIMO Antenna for Sub-6 GHz 5G Terminals
In this paper, a dual-band multiple-input-multiple-output (MIMO) antenna is proposed for fifth-generation (5G) wireless communication terminals. The measured -10 dB impedance bandwidths of 380 MHz (3.34–3.72 GHz) and 560 MHz (4.57–5.13 GHz) can cover the 3.4–3.6 GHz and 4.8–5 GHz 5G bands. The single antenna element of this proposed MIMO is composed of an F-shaped feed strip and an inverted L-shaped radiation strip. A defected ground structure is employed to obtain a good isolation performance, whereby the measured isolation between the antenna elements is observed to be larger than 23 dB. The measured total radiation efficiencies at 3.5 GHz and 4.9 GHz are 76.65% and 71.93%, respectively. Besides, the calculated envelope correlation coefficients (ECC) are less than 0.00125 and 0.01164 at the low-frequency and high-frequency bands, respectively. Furthermore, the specific absorption ratio (SAR) analysis of the antenna verifies that it qualifies for 5G terminals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信