A. Pananjady, Cheng Mao, Vidya Muthukumar, M. Wainwright, T. Courtade
{"title":"根据部分成对比较进行估计的最坏情况与平均情况设计","authors":"A. Pananjady, Cheng Mao, Vidya Muthukumar, M. Wainwright, T. Courtade","doi":"10.1214/19-aos1838","DOIUrl":null,"url":null,"abstract":"Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutationbased models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two computationally efficient estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. We also provide explicit classes of graphs for which the rates achieved by these estimators are optimal. Our results are corroborated by simulations on multiple comparison topologies.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"1072-1097"},"PeriodicalIF":3.2000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Worst-case versus average-case design for estimation from partial pairwise comparisons\",\"authors\":\"A. Pananjady, Cheng Mao, Vidya Muthukumar, M. Wainwright, T. Courtade\",\"doi\":\"10.1214/19-aos1838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutationbased models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two computationally efficient estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. We also provide explicit classes of graphs for which the rates achieved by these estimators are optimal. Our results are corroborated by simulations on multiple comparison topologies.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"1072-1097\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1838\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1838","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Worst-case versus average-case design for estimation from partial pairwise comparisons
Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutationbased models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two computationally efficient estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. We also provide explicit classes of graphs for which the rates achieved by these estimators are optimal. Our results are corroborated by simulations on multiple comparison topologies.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.