{"title":"用au@Cu2O core@shell纳米晶体功能化聚对苯二甲酸乙二醇酯织物用于环境净化","authors":"Jhen-Yang Wu , Mei-Jing Fang , Tomoyuki Kurioka , Ting-Hsuan Lai , Ming-Yu Kuo , Yi-Hsuan Chiu , Chun-Wen Tsao , Yi-An Chen , Hsuan-Hung Kuo , Yu-An Chien , Po-Wei Cheng , Bo-You Lin , Sue-Min Chang , Chun-Yi Chen , Masato Sone , Tso-Fu Mark Chang , Yung-Jung Hsu","doi":"10.1016/j.mne.2023.100217","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater containing synthetic dyes has caused a significant risk to the environment and human health. Among the various methods to treat wastewater, photocatalysis recommends itself as a particularly efficient tool for the removal of dyes from industrial effluents. In this work, Au@Cu<sub>2</sub>O core@shell nanocrystals with controllable shell thicknesses from 38.1 ± 2.8 (Au@Cu<sub>2</sub>O-2), 48.1 ± 3.7 (Au@Cu<sub>2</sub>O-3) to 59.1 ± 4.1 nm (Au@Cu<sub>2</sub>O-4) have been prepared and immobilized on polyethylene terephthalate (PET) fabrics for applications in photocatalytic degradation of methylene orange (MO). The influence of the shell thickness of Au@Cu<sub>2</sub>O on the photocatalytic performance of the functionalized PET fabrics has been examined. Among all the samples tested, immobilization of Au@Cu<sub>2</sub>O-3 rendered PET fabrics the largest photocatalytic activity for MO degradation, achieving an apparent rate constant of MO degradation of 7.43 × 10<sup>−3</sup> min<sup>−1</sup>. A plausible mechanism accounting for the degradation process of MO over the functionalized PET has been proposed based on the results of scavenger experiments. This work has provided a delicate yet practical functional textile paradigm by combining the photocatalytic capability of Au@Cu<sub>2</sub>O and the adaptable feature of PET fabrics. The findings from this study can deliver a viable idea for the design of versatile textiles with competent photocatalytic capacity for environmental purifications and energy conversion.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"20 ","pages":"Article 100217"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functionalization of polyethylene terephthalate fabrics with au@Cu2O core@shell nanocrystals for environmental purifications\",\"authors\":\"Jhen-Yang Wu , Mei-Jing Fang , Tomoyuki Kurioka , Ting-Hsuan Lai , Ming-Yu Kuo , Yi-Hsuan Chiu , Chun-Wen Tsao , Yi-An Chen , Hsuan-Hung Kuo , Yu-An Chien , Po-Wei Cheng , Bo-You Lin , Sue-Min Chang , Chun-Yi Chen , Masato Sone , Tso-Fu Mark Chang , Yung-Jung Hsu\",\"doi\":\"10.1016/j.mne.2023.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wastewater containing synthetic dyes has caused a significant risk to the environment and human health. Among the various methods to treat wastewater, photocatalysis recommends itself as a particularly efficient tool for the removal of dyes from industrial effluents. In this work, Au@Cu<sub>2</sub>O core@shell nanocrystals with controllable shell thicknesses from 38.1 ± 2.8 (Au@Cu<sub>2</sub>O-2), 48.1 ± 3.7 (Au@Cu<sub>2</sub>O-3) to 59.1 ± 4.1 nm (Au@Cu<sub>2</sub>O-4) have been prepared and immobilized on polyethylene terephthalate (PET) fabrics for applications in photocatalytic degradation of methylene orange (MO). The influence of the shell thickness of Au@Cu<sub>2</sub>O on the photocatalytic performance of the functionalized PET fabrics has been examined. Among all the samples tested, immobilization of Au@Cu<sub>2</sub>O-3 rendered PET fabrics the largest photocatalytic activity for MO degradation, achieving an apparent rate constant of MO degradation of 7.43 × 10<sup>−3</sup> min<sup>−1</sup>. A plausible mechanism accounting for the degradation process of MO over the functionalized PET has been proposed based on the results of scavenger experiments. This work has provided a delicate yet practical functional textile paradigm by combining the photocatalytic capability of Au@Cu<sub>2</sub>O and the adaptable feature of PET fabrics. The findings from this study can deliver a viable idea for the design of versatile textiles with competent photocatalytic capacity for environmental purifications and energy conversion.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"20 \",\"pages\":\"Article 100217\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007223000473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Functionalization of polyethylene terephthalate fabrics with au@Cu2O core@shell nanocrystals for environmental purifications
Wastewater containing synthetic dyes has caused a significant risk to the environment and human health. Among the various methods to treat wastewater, photocatalysis recommends itself as a particularly efficient tool for the removal of dyes from industrial effluents. In this work, Au@Cu2O core@shell nanocrystals with controllable shell thicknesses from 38.1 ± 2.8 (Au@Cu2O-2), 48.1 ± 3.7 (Au@Cu2O-3) to 59.1 ± 4.1 nm (Au@Cu2O-4) have been prepared and immobilized on polyethylene terephthalate (PET) fabrics for applications in photocatalytic degradation of methylene orange (MO). The influence of the shell thickness of Au@Cu2O on the photocatalytic performance of the functionalized PET fabrics has been examined. Among all the samples tested, immobilization of Au@Cu2O-3 rendered PET fabrics the largest photocatalytic activity for MO degradation, achieving an apparent rate constant of MO degradation of 7.43 × 10−3 min−1. A plausible mechanism accounting for the degradation process of MO over the functionalized PET has been proposed based on the results of scavenger experiments. This work has provided a delicate yet practical functional textile paradigm by combining the photocatalytic capability of Au@Cu2O and the adaptable feature of PET fabrics. The findings from this study can deliver a viable idea for the design of versatile textiles with competent photocatalytic capacity for environmental purifications and energy conversion.