Zhiang Zhang , Adrian Chong , Yuqi Pan , Chenlu Zhang , Khee Poh Lam
{"title":"暖通空调最优控制的全建筑能耗模型:基于深度强化学习的实用框架","authors":"Zhiang Zhang , Adrian Chong , Yuqi Pan , Chenlu Zhang , Khee Poh Lam","doi":"10.1016/j.enbuild.2019.07.029","DOIUrl":null,"url":null,"abstract":"<div><p>Whole building energy model (BEM) is a physics-based modeling method for building energy simulation. It has been widely used in the building industry for code compliance, building design optimization, retrofit analysis, and other uses. Recent research also indicates its strong potential for the control of heating, ventilation and air-conditioning (HVAC) systems. However, its high-order nature and slow computational speed limit its practical application in real-time HVAC optimal control. Therefore, this study proposes a practical control framework (named BEM-DRL) that is based on deep reinforcement learning. The framework is implemented and assessed in a novel radiant heating system in an existing office building as a case study. The complete implementation process is presented in this study, including: building energy modeling for the novel heating system, multi-objective BEM calibration using the Bayesian method and the Genetic Algorithm, deep reinforcement learning training and simulation results evaluation, and control deployment. By analyzing the real-life control deployment data, it is found that BEM-DRL achieves 16.7% heating demand reduction with more than 95% probability compared to the old rule-based control. However, the framework still faces the practical challenges including building energy modeling of novel HVAC systems and multi-objective model calibration. Systematic study is also needed for the design of deep reinforcement learning training to provide a guideline for practitioners.</p></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"199 ","pages":"Pages 472-490"},"PeriodicalIF":6.6000,"publicationDate":"2019-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enbuild.2019.07.029","citationCount":"163","resultStr":"{\"title\":\"Whole building energy model for HVAC optimal control: A practical framework based on deep reinforcement learning\",\"authors\":\"Zhiang Zhang , Adrian Chong , Yuqi Pan , Chenlu Zhang , Khee Poh Lam\",\"doi\":\"10.1016/j.enbuild.2019.07.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Whole building energy model (BEM) is a physics-based modeling method for building energy simulation. It has been widely used in the building industry for code compliance, building design optimization, retrofit analysis, and other uses. Recent research also indicates its strong potential for the control of heating, ventilation and air-conditioning (HVAC) systems. However, its high-order nature and slow computational speed limit its practical application in real-time HVAC optimal control. Therefore, this study proposes a practical control framework (named BEM-DRL) that is based on deep reinforcement learning. The framework is implemented and assessed in a novel radiant heating system in an existing office building as a case study. The complete implementation process is presented in this study, including: building energy modeling for the novel heating system, multi-objective BEM calibration using the Bayesian method and the Genetic Algorithm, deep reinforcement learning training and simulation results evaluation, and control deployment. By analyzing the real-life control deployment data, it is found that BEM-DRL achieves 16.7% heating demand reduction with more than 95% probability compared to the old rule-based control. However, the framework still faces the practical challenges including building energy modeling of novel HVAC systems and multi-objective model calibration. Systematic study is also needed for the design of deep reinforcement learning training to provide a guideline for practitioners.</p></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"199 \",\"pages\":\"Pages 472-490\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2019-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.enbuild.2019.07.029\",\"citationCount\":\"163\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778818330858\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778818330858","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Whole building energy model for HVAC optimal control: A practical framework based on deep reinforcement learning
Whole building energy model (BEM) is a physics-based modeling method for building energy simulation. It has been widely used in the building industry for code compliance, building design optimization, retrofit analysis, and other uses. Recent research also indicates its strong potential for the control of heating, ventilation and air-conditioning (HVAC) systems. However, its high-order nature and slow computational speed limit its practical application in real-time HVAC optimal control. Therefore, this study proposes a practical control framework (named BEM-DRL) that is based on deep reinforcement learning. The framework is implemented and assessed in a novel radiant heating system in an existing office building as a case study. The complete implementation process is presented in this study, including: building energy modeling for the novel heating system, multi-objective BEM calibration using the Bayesian method and the Genetic Algorithm, deep reinforcement learning training and simulation results evaluation, and control deployment. By analyzing the real-life control deployment data, it is found that BEM-DRL achieves 16.7% heating demand reduction with more than 95% probability compared to the old rule-based control. However, the framework still faces the practical challenges including building energy modeling of novel HVAC systems and multi-objective model calibration. Systematic study is also needed for the design of deep reinforcement learning training to provide a guideline for practitioners.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.