{"title":"提高阻抗散射体迭代物理光学收敛性的线性迭代方案的比较","authors":"Jeong-Un Yoo, I. Koh","doi":"10.26866/jees.2023.1.l.12","DOIUrl":null,"url":null,"abstract":"The conventional iterative physical optics (IPO) method updates the surface current based on the Jacobi iteration scheme, which typically diverges for large objects. To control the convergence property of the IPO method, other iteration schemes, such as Gauss–Seidel and successive over-relaxation, can be used. In this study, we compare the convergence properties of three iteration schemes for scatterings by five scatterers comprising electrically perfect or imperfect conductors modeled with an impedance material. The accuracy of the IPO method is compared with that of the multi-level fast multipole method.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Linear Iteration Schemes to Improve the Convergence of Iterative Physical Optics for an Impedance Scatterer\",\"authors\":\"Jeong-Un Yoo, I. Koh\",\"doi\":\"10.26866/jees.2023.1.l.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional iterative physical optics (IPO) method updates the surface current based on the Jacobi iteration scheme, which typically diverges for large objects. To control the convergence property of the IPO method, other iteration schemes, such as Gauss–Seidel and successive over-relaxation, can be used. In this study, we compare the convergence properties of three iteration schemes for scatterings by five scatterers comprising electrically perfect or imperfect conductors modeled with an impedance material. The accuracy of the IPO method is compared with that of the multi-level fast multipole method.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.1.l.12\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.1.l.12","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparison of Linear Iteration Schemes to Improve the Convergence of Iterative Physical Optics for an Impedance Scatterer
The conventional iterative physical optics (IPO) method updates the surface current based on the Jacobi iteration scheme, which typically diverges for large objects. To control the convergence property of the IPO method, other iteration schemes, such as Gauss–Seidel and successive over-relaxation, can be used. In this study, we compare the convergence properties of three iteration schemes for scatterings by five scatterers comprising electrically perfect or imperfect conductors modeled with an impedance material. The accuracy of the IPO method is compared with that of the multi-level fast multipole method.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.