{"title":"m 6A修饰:抗癌治疗的新途径","authors":"Yongtai Bai, Kai Li, Jinying Peng, Chengqi Yi","doi":"10.1093/lifemedi/lnad008","DOIUrl":null,"url":null,"abstract":"<p><p>To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. m<sup>6</sup>A, also known as <i>N</i> <sup>6</sup>-methyladenosine, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal m<sup>6</sup>A modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers. In this review, we provide an update on the most recent m<sup>6</sup>A modification discoveries as well as the critical roles of m<sup>6</sup>A modification in cancer development and progression. We summarize the mechanisms of m<sup>6</sup>A involvement in cancer and list potential cancer therapy inhibitors that target m<sup>6</sup>A regulators such as \"writer\" METTL3 and \"eraser\" FTO.</p>","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":" ","pages":"lnad008"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749794/pdf/","citationCount":"0","resultStr":"{\"title\":\"m<sup>6</sup>A modification: a new avenue for anti-cancer therapy.\",\"authors\":\"Yongtai Bai, Kai Li, Jinying Peng, Chengqi Yi\",\"doi\":\"10.1093/lifemedi/lnad008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. m<sup>6</sup>A, also known as <i>N</i> <sup>6</sup>-methyladenosine, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal m<sup>6</sup>A modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers. In this review, we provide an update on the most recent m<sup>6</sup>A modification discoveries as well as the critical roles of m<sup>6</sup>A modification in cancer development and progression. We summarize the mechanisms of m<sup>6</sup>A involvement in cancer and list potential cancer therapy inhibitors that target m<sup>6</sup>A regulators such as \\\"writer\\\" METTL3 and \\\"eraser\\\" FTO.</p>\",\"PeriodicalId\":74073,\"journal\":{\"name\":\"Life medicine\",\"volume\":\" \",\"pages\":\"lnad008\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/lifemedi/lnad008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnad008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
m6A modification: a new avenue for anti-cancer therapy.
To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. m6A, also known as N6-methyladenosine, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal m6A modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers. In this review, we provide an update on the most recent m6A modification discoveries as well as the critical roles of m6A modification in cancer development and progression. We summarize the mechanisms of m6A involvement in cancer and list potential cancer therapy inhibitors that target m6A regulators such as "writer" METTL3 and "eraser" FTO.