基于预警评分方法的智能医院自适应生命体征监测系统

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Imen Ben Ida, Moez Balti, Sondes Chaabane, Abderrazak Jemai
{"title":"基于预警评分方法的智能医院自适应生命体征监测系统","authors":"Imen Ben Ida,&nbsp;Moez Balti,&nbsp;Sondes Chaabane,&nbsp;Abderrazak Jemai","doi":"10.1049/smc2.12004","DOIUrl":null,"url":null,"abstract":"<p>Changes in vital signs are an important indicator of physiological decline and provide opportunities for early recognition and intervention. The collected vital signs data can be evaluated using several approaches such as the Early warning score (EWS) approach to predict the risk level of patients. By exploring the Internet of things (IoT), vital signs monitoring solutions are automated based on various medical devices and sensors. However, there is a lack of efficient tools that enable an adaptative monitoring depending on the patient situations. This article explores the IoT technologies to provide an EWS system in smart hospital situation. The proposed solution presents an adaptative configuration of the vital signs monitoring process depending on the patient’s health status variation and the medical staff decisions. Also, an intelligent notification mechanism that reduces the delay of the medical staff intervention in the case of risk detection is proposed.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12004","citationCount":"1","resultStr":"{\"title\":\"Adaptative vital signs monitoring system based on the early warning score approach in smart hospital context\",\"authors\":\"Imen Ben Ida,&nbsp;Moez Balti,&nbsp;Sondes Chaabane,&nbsp;Abderrazak Jemai\",\"doi\":\"10.1049/smc2.12004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes in vital signs are an important indicator of physiological decline and provide opportunities for early recognition and intervention. The collected vital signs data can be evaluated using several approaches such as the Early warning score (EWS) approach to predict the risk level of patients. By exploring the Internet of things (IoT), vital signs monitoring solutions are automated based on various medical devices and sensors. However, there is a lack of efficient tools that enable an adaptative monitoring depending on the patient situations. This article explores the IoT technologies to provide an EWS system in smart hospital situation. The proposed solution presents an adaptative configuration of the vital signs monitoring process depending on the patient’s health status variation and the medical staff decisions. Also, an intelligent notification mechanism that reduces the delay of the medical staff intervention in the case of risk detection is proposed.</p>\",\"PeriodicalId\":34740,\"journal\":{\"name\":\"IET Smart Cities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

生命体征的变化是生理机能下降的重要指标,为早期识别和干预提供了机会。收集到的生命体征数据可以使用多种方法进行评估,如早期预警评分(EWS)方法来预测患者的风险水平。通过探索物联网(IoT),生命体征监测解决方案基于各种医疗设备和传感器实现自动化。然而,缺乏有效的工具来根据患者的情况进行适应性监测。本文探讨物联网技术为智慧医院情境下的EWS系统提供支持。提出的解决方案根据患者的健康状况变化和医务人员的决定,提出了生命体征监测过程的自适应配置。提出了一种智能通知机制,减少了医务人员在发现风险时干预的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptative vital signs monitoring system based on the early warning score approach in smart hospital context

Adaptative vital signs monitoring system based on the early warning score approach in smart hospital context

Changes in vital signs are an important indicator of physiological decline and provide opportunities for early recognition and intervention. The collected vital signs data can be evaluated using several approaches such as the Early warning score (EWS) approach to predict the risk level of patients. By exploring the Internet of things (IoT), vital signs monitoring solutions are automated based on various medical devices and sensors. However, there is a lack of efficient tools that enable an adaptative monitoring depending on the patient situations. This article explores the IoT technologies to provide an EWS system in smart hospital situation. The proposed solution presents an adaptative configuration of the vital signs monitoring process depending on the patient’s health status variation and the medical staff decisions. Also, an intelligent notification mechanism that reduces the delay of the medical staff intervention in the case of risk detection is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信