Dejian Yu, Tianxing Pan, Zeshui Xu, Ronald R. Yager
{"title":"OWA算子知识扩散与研究前沿的探索——主路径分析","authors":"Dejian Yu, Tianxing Pan, Zeshui Xu, Ronald R. Yager","doi":"10.1007/s10462-023-10462-y","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, more and more attention is paid to the OWA operator in the academy. Growth curve analysis, which is often used in ecosystem studies, also indicates that this growth trend will continue. However, prior literature has not made a big picture to help researchers make clear of the development of this field by identifying the evolution path. The classic main path analysis is an excellent method combining quantitative analysis and qualitative analysis. We conducted the classic main path analysis and its variants on a citation network with 1474 papers to probe the development trajectories and research topics of OWA. We obtained several findings by constructing local and global main path, and multiple main paths. The path results indicate that weight generation and operator generalization run through the overall OWA domain, show that the multiple criteria decision making process assumed in the related research begins to be dynamic and multi-period, and reveal that some theories such as social network theory are introduced into the OWA operator and the applications are also greatly expanded.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"56 10","pages":"12233 - 12255"},"PeriodicalIF":10.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-023-10462-y.pdf","citationCount":"2","resultStr":"{\"title\":\"Exploring the knowledge diffusion and research front of OWA operator: a main path analysis\",\"authors\":\"Dejian Yu, Tianxing Pan, Zeshui Xu, Ronald R. Yager\",\"doi\":\"10.1007/s10462-023-10462-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, more and more attention is paid to the OWA operator in the academy. Growth curve analysis, which is often used in ecosystem studies, also indicates that this growth trend will continue. However, prior literature has not made a big picture to help researchers make clear of the development of this field by identifying the evolution path. The classic main path analysis is an excellent method combining quantitative analysis and qualitative analysis. We conducted the classic main path analysis and its variants on a citation network with 1474 papers to probe the development trajectories and research topics of OWA. We obtained several findings by constructing local and global main path, and multiple main paths. The path results indicate that weight generation and operator generalization run through the overall OWA domain, show that the multiple criteria decision making process assumed in the related research begins to be dynamic and multi-period, and reveal that some theories such as social network theory are introduced into the OWA operator and the applications are also greatly expanded.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"56 10\",\"pages\":\"12233 - 12255\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-023-10462-y.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-023-10462-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-023-10462-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploring the knowledge diffusion and research front of OWA operator: a main path analysis
In recent years, more and more attention is paid to the OWA operator in the academy. Growth curve analysis, which is often used in ecosystem studies, also indicates that this growth trend will continue. However, prior literature has not made a big picture to help researchers make clear of the development of this field by identifying the evolution path. The classic main path analysis is an excellent method combining quantitative analysis and qualitative analysis. We conducted the classic main path analysis and its variants on a citation network with 1474 papers to probe the development trajectories and research topics of OWA. We obtained several findings by constructing local and global main path, and multiple main paths. The path results indicate that weight generation and operator generalization run through the overall OWA domain, show that the multiple criteria decision making process assumed in the related research begins to be dynamic and multi-period, and reveal that some theories such as social network theory are introduced into the OWA operator and the applications are also greatly expanded.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.