高维广义线性模型的线性假设检验。

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Annals of Statistics Pub Date : 2019-10-01 Epub Date: 2019-08-03 DOI:10.1214/18-AOS1761
Chengchun Shi, Rui Song, Zhao Chen, Runze Li
{"title":"高维广义线性模型的线性假设检验。","authors":"Chengchun Shi, Rui Song, Zhao Chen, Runze Li","doi":"10.1214/18-AOS1761","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with testing linear hypotheses in high-dimensional generalized linear models. To deal with linear hypotheses, we first propose constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are χ<sup>2</sup> distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow non-central χ<sup>2</sup> distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to ∞ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"47 5 1","pages":"2671-2703"},"PeriodicalIF":3.2000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750760/pdf/","citationCount":"0","resultStr":"{\"title\":\"LINEAR HYPOTHESIS TESTING FOR HIGH DIMENSIONAL GENERALIZED LINEAR MODELS.\",\"authors\":\"Chengchun Shi, Rui Song, Zhao Chen, Runze Li\",\"doi\":\"10.1214/18-AOS1761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with testing linear hypotheses in high-dimensional generalized linear models. To deal with linear hypotheses, we first propose constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are χ<sup>2</sup> distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow non-central χ<sup>2</sup> distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to ∞ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"47 5 1\",\"pages\":\"2671-2703\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOS1761\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOS1761","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了高维广义线性模型中线性假设的检验问题。为了处理线性假设,我们首先提出了约束部分正则化方法,并研究了其统计性质。我们进一步介绍了一种求解具有折叠凹罚函数和线性约束的正则化问题的算法。为了检验线性假设,我们提出了一个偏惩罚似然比检验,一个偏惩罚分数检验和一个偏惩罚沃尔德检验。我们证明了这三个检验统计量的极限零分布都是相同自由度的χ2分布,并且在局部选择下,只要检验假设涉及的参数个数以一定的速率增长到∞,它们都渐近服从相同自由度和非中心参数的非中心χ2分布。进行了仿真研究,以检验所提出的测试的有限样本性能。通过一个实际数据实例的实证分析,说明了所提出的测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LINEAR HYPOTHESIS TESTING FOR HIGH DIMENSIONAL GENERALIZED LINEAR MODELS.

This paper is concerned with testing linear hypotheses in high-dimensional generalized linear models. To deal with linear hypotheses, we first propose constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are χ2 distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow non-central χ2 distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to ∞ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信