{"title":"全金属宽带倾斜双极化维瓦尔第阵列天线的多参数设计","authors":"Cheolsoo Lee, Joo-Rae Park","doi":"10.26866/jees.2023.3.r.162","DOIUrl":null,"url":null,"abstract":"An all-metal, broadband, dual-polarized Vivaldi array antenna was designed and fabricated. The structure of the proposed antenna comprised a resonant cavity and tapered fins that contacted the ground plane directly, allowing the connection of a balun and tapered fins and reducing the antenna length. To extend the frequency range, the resonant cavity width is larger than half the aperture length, and the tapered fins have nonuniform thickness. The proposed Vivaldi array antenna is designed based on parametric studies. The gains of the active element and array ranged from -2.9 dBi to 6.4 dBi and 14.9 to 23.5 dBi in the frequency range of 2–6 GHz. The proposed array antenna exhibited beam steering capability up to 45° along the azimuth and 25° along the elevation angle directions. Since the measured results and simulated predictions were in good agreement, the proposed array antenna would be applicable for a broadband, wide-beam steering system with different polarization requirements.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiparametric Design of an All-Metal, Broadband, Slant Dual-Polarized Vivaldi Array Antenna\",\"authors\":\"Cheolsoo Lee, Joo-Rae Park\",\"doi\":\"10.26866/jees.2023.3.r.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An all-metal, broadband, dual-polarized Vivaldi array antenna was designed and fabricated. The structure of the proposed antenna comprised a resonant cavity and tapered fins that contacted the ground plane directly, allowing the connection of a balun and tapered fins and reducing the antenna length. To extend the frequency range, the resonant cavity width is larger than half the aperture length, and the tapered fins have nonuniform thickness. The proposed Vivaldi array antenna is designed based on parametric studies. The gains of the active element and array ranged from -2.9 dBi to 6.4 dBi and 14.9 to 23.5 dBi in the frequency range of 2–6 GHz. The proposed array antenna exhibited beam steering capability up to 45° along the azimuth and 25° along the elevation angle directions. Since the measured results and simulated predictions were in good agreement, the proposed array antenna would be applicable for a broadband, wide-beam steering system with different polarization requirements.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.3.r.162\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.3.r.162","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multiparametric Design of an All-Metal, Broadband, Slant Dual-Polarized Vivaldi Array Antenna
An all-metal, broadband, dual-polarized Vivaldi array antenna was designed and fabricated. The structure of the proposed antenna comprised a resonant cavity and tapered fins that contacted the ground plane directly, allowing the connection of a balun and tapered fins and reducing the antenna length. To extend the frequency range, the resonant cavity width is larger than half the aperture length, and the tapered fins have nonuniform thickness. The proposed Vivaldi array antenna is designed based on parametric studies. The gains of the active element and array ranged from -2.9 dBi to 6.4 dBi and 14.9 to 23.5 dBi in the frequency range of 2–6 GHz. The proposed array antenna exhibited beam steering capability up to 45° along the azimuth and 25° along the elevation angle directions. Since the measured results and simulated predictions were in good agreement, the proposed array antenna would be applicable for a broadband, wide-beam steering system with different polarization requirements.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.