牙根本质的同步辐射分析:氟化物和钙离子在羟基磷灰石再矿化中的作用

IF 2.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Journal of Synchrotron Radiation Pub Date : 2022-03-01 Epub Date: 2022-01-19 DOI:10.1107/S1600577521013655
Nutthapong Kantrong, Krassawan Khongkhaphet, Nutnicha Sitornsud, Pakaporn Lo-Apirukkul, Waraporn Phanprom, Catleya Rojviriya, Penphitcha Amonpattaratkit, Watcharaphong Ariyakriangkai
{"title":"牙根本质的同步辐射分析:氟化物和钙离子在羟基磷灰石再矿化中的作用","authors":"Nutthapong Kantrong, Krassawan Khongkhaphet, Nutnicha Sitornsud, Pakaporn Lo-Apirukkul, Waraporn Phanprom, Catleya Rojviriya, Penphitcha Amonpattaratkit, Watcharaphong Ariyakriangkai","doi":"10.1107/S1600577521013655","DOIUrl":null,"url":null,"abstract":"<p><p>Although the use of fluoride for root caries control is reported to be effective, the mechanism of maintaining hydroxyapatite is still unclear. This study elucidates the roles of fluoride in the recrystallization of hydroxyapatite, and the impact of calcium to maintain the abundance of hydroxyapatite on acid-challenged root dentin with a novel approach - using synchrotron radiation. Root dentin samples obtained from 40 extracted human premolars were subjected to pH challenge in combination with fluoride treatment. The effect of fluoride on hydroxyapatite regeneration on the root was investigated by using a range of fluoride concentrations (1000-5000 p.p.m.) and the EDTA-chelation technique in vitro. Synchrotron radiation X-ray micro-computed tomography and X-ray absorption spectroscopy were utilized to characterize the chemical composition of calcium species on the surface of prepared samples. The percentage of hydroxyapatite and the relative abundance of calcium species were subsequently compared between groups. The absence of calcium or fluoride prevented the complete remineralization of hydroxyapatite on the surface of early root caries. Different concentrations of fluoride exposure did not affect the relative abundance of hydroxyapatite. Sufficient potency of 1000 p.p.m. fluoride solution in promoting hydroxyapatite structural recrystallization on the root was demonstrated. Both calcium and fluoride ions are prerequisites in a caries-prone environment. Orchestration of F<sup>-</sup> and Ca<sup>2+</sup> is required for structural homeostasis of root dentin during acid attack. Sustainable levels of F<sup>-</sup> and Ca<sup>2+</sup> might thus be a strict requirement in the saliva of the population prone to root caries. Fluoride and calcium contribute to structural homeostasis of tooth root, highlighting that routine fluoride use in combination with calcium replenishment is recommended for maintaining dental health. This study also demonstrates that utilization of synchrotron radiation could provide a promising experimental platform for laboratory investigation especially in the dental material research field.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900867/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synchrotron radiation analysis of root dentin: the roles of fluoride and calcium ions in hydroxyapatite remineralization.\",\"authors\":\"Nutthapong Kantrong, Krassawan Khongkhaphet, Nutnicha Sitornsud, Pakaporn Lo-Apirukkul, Waraporn Phanprom, Catleya Rojviriya, Penphitcha Amonpattaratkit, Watcharaphong Ariyakriangkai\",\"doi\":\"10.1107/S1600577521013655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the use of fluoride for root caries control is reported to be effective, the mechanism of maintaining hydroxyapatite is still unclear. This study elucidates the roles of fluoride in the recrystallization of hydroxyapatite, and the impact of calcium to maintain the abundance of hydroxyapatite on acid-challenged root dentin with a novel approach - using synchrotron radiation. Root dentin samples obtained from 40 extracted human premolars were subjected to pH challenge in combination with fluoride treatment. The effect of fluoride on hydroxyapatite regeneration on the root was investigated by using a range of fluoride concentrations (1000-5000 p.p.m.) and the EDTA-chelation technique in vitro. Synchrotron radiation X-ray micro-computed tomography and X-ray absorption spectroscopy were utilized to characterize the chemical composition of calcium species on the surface of prepared samples. The percentage of hydroxyapatite and the relative abundance of calcium species were subsequently compared between groups. The absence of calcium or fluoride prevented the complete remineralization of hydroxyapatite on the surface of early root caries. Different concentrations of fluoride exposure did not affect the relative abundance of hydroxyapatite. Sufficient potency of 1000 p.p.m. fluoride solution in promoting hydroxyapatite structural recrystallization on the root was demonstrated. Both calcium and fluoride ions are prerequisites in a caries-prone environment. Orchestration of F<sup>-</sup> and Ca<sup>2+</sup> is required for structural homeostasis of root dentin during acid attack. Sustainable levels of F<sup>-</sup> and Ca<sup>2+</sup> might thus be a strict requirement in the saliva of the population prone to root caries. Fluoride and calcium contribute to structural homeostasis of tooth root, highlighting that routine fluoride use in combination with calcium replenishment is recommended for maintaining dental health. This study also demonstrates that utilization of synchrotron radiation could provide a promising experimental platform for laboratory investigation especially in the dental material research field.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577521013655\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577521013655","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

早期根龋病变需要口腔环境中最适量的游离氟化物和钙离子,以启动根牙本质上的羟基磷灰石再矿化。本研究通过一种新的方法——使用同步辐射——阐明了氟化物和钙在酸激发的根牙本质上维持羟基磷灰石丰度的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrotron radiation analysis of root dentin: the roles of fluoride and calcium ions in hydroxyapatite remineralization.

Although the use of fluoride for root caries control is reported to be effective, the mechanism of maintaining hydroxyapatite is still unclear. This study elucidates the roles of fluoride in the recrystallization of hydroxyapatite, and the impact of calcium to maintain the abundance of hydroxyapatite on acid-challenged root dentin with a novel approach - using synchrotron radiation. Root dentin samples obtained from 40 extracted human premolars were subjected to pH challenge in combination with fluoride treatment. The effect of fluoride on hydroxyapatite regeneration on the root was investigated by using a range of fluoride concentrations (1000-5000 p.p.m.) and the EDTA-chelation technique in vitro. Synchrotron radiation X-ray micro-computed tomography and X-ray absorption spectroscopy were utilized to characterize the chemical composition of calcium species on the surface of prepared samples. The percentage of hydroxyapatite and the relative abundance of calcium species were subsequently compared between groups. The absence of calcium or fluoride prevented the complete remineralization of hydroxyapatite on the surface of early root caries. Different concentrations of fluoride exposure did not affect the relative abundance of hydroxyapatite. Sufficient potency of 1000 p.p.m. fluoride solution in promoting hydroxyapatite structural recrystallization on the root was demonstrated. Both calcium and fluoride ions are prerequisites in a caries-prone environment. Orchestration of F- and Ca2+ is required for structural homeostasis of root dentin during acid attack. Sustainable levels of F- and Ca2+ might thus be a strict requirement in the saliva of the population prone to root caries. Fluoride and calcium contribute to structural homeostasis of tooth root, highlighting that routine fluoride use in combination with calcium replenishment is recommended for maintaining dental health. This study also demonstrates that utilization of synchrotron radiation could provide a promising experimental platform for laboratory investigation especially in the dental material research field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
12.00%
发文量
289
审稿时长
4-8 weeks
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信