{"title":"超临界CO2辅助不同粒径TiO2电沉积高强度Ni基TiO2复合材料","authors":"Yu-An Chien, Chun-Yi Chen, Tomoyuki Kurioka, Masato Sone, Tso-Fu Mark Chang","doi":"10.1016/j.mne.2023.100219","DOIUrl":null,"url":null,"abstract":"<div><p>High strength Ni matrix TiO<sub>2</sub> composites are prepared by co-electrodeposition with an electrolyte composed of Ni Watts bath, surfactants, CO<sub>2</sub> in the supercritical fluid state and various sizes of TiO<sub>2</sub> particles. The surfactants and supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) are used to emulsify the aqueous Ni Watts bath to promote the incorporation of TiO<sub>2</sub> particles into the Ni matrix. TiO<sub>2</sub> particles with three different average sizes are used in the co-electrodeposition to evaluate the effect on properties of the Ni-TiO<sub>2</sub> composites. The grain sizes of the Ni matrix in the composites are compared from the X-ray diffraction results and the Scherrer eq. A refined average grain size in the Ni matrix is observed when using TiO<sub>2</sub> particles with a larger size. The TiO<sub>2</sub> is evaluated by energy-dispersive X-ray spectroscopy (EDX), and the TiO<sub>2</sub> distribution is quantified by the coefficient of variation (cov) of the local density of Ti from the EDX result. The TiO<sub>2</sub> content attained 4.5 wt% with the lowest cov value (which suggests the most uniform distribution) in the composite when the smallest (21 nm) TiO<sub>2</sub> particles are used. The TiO<sub>2</sub> content achieves 22.3 wt% with the highest cov value (which suggests the least uniform distribution) when the largest (5 μm) TiO<sub>2</sub> particles are used. Microhardness of the Ni-TiO<sub>2</sub> composites is found to be highly depended on the cov value. Hence, the Ni-TiO<sub>2</sub> composite prepared with the smallest TiO<sub>2</sub> particles shows the highest microhardness at 1274 HV.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"20 ","pages":"Article 100219"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High strength Ni matrix TiO2 composites by supercritical CO2 assisted Co-electrodeposition with different sizes of TiO2 particle\",\"authors\":\"Yu-An Chien, Chun-Yi Chen, Tomoyuki Kurioka, Masato Sone, Tso-Fu Mark Chang\",\"doi\":\"10.1016/j.mne.2023.100219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High strength Ni matrix TiO<sub>2</sub> composites are prepared by co-electrodeposition with an electrolyte composed of Ni Watts bath, surfactants, CO<sub>2</sub> in the supercritical fluid state and various sizes of TiO<sub>2</sub> particles. The surfactants and supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) are used to emulsify the aqueous Ni Watts bath to promote the incorporation of TiO<sub>2</sub> particles into the Ni matrix. TiO<sub>2</sub> particles with three different average sizes are used in the co-electrodeposition to evaluate the effect on properties of the Ni-TiO<sub>2</sub> composites. The grain sizes of the Ni matrix in the composites are compared from the X-ray diffraction results and the Scherrer eq. A refined average grain size in the Ni matrix is observed when using TiO<sub>2</sub> particles with a larger size. The TiO<sub>2</sub> is evaluated by energy-dispersive X-ray spectroscopy (EDX), and the TiO<sub>2</sub> distribution is quantified by the coefficient of variation (cov) of the local density of Ti from the EDX result. The TiO<sub>2</sub> content attained 4.5 wt% with the lowest cov value (which suggests the most uniform distribution) in the composite when the smallest (21 nm) TiO<sub>2</sub> particles are used. The TiO<sub>2</sub> content achieves 22.3 wt% with the highest cov value (which suggests the least uniform distribution) when the largest (5 μm) TiO<sub>2</sub> particles are used. Microhardness of the Ni-TiO<sub>2</sub> composites is found to be highly depended on the cov value. Hence, the Ni-TiO<sub>2</sub> composite prepared with the smallest TiO<sub>2</sub> particles shows the highest microhardness at 1274 HV.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"20 \",\"pages\":\"Article 100219\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007223000497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High strength Ni matrix TiO2 composites by supercritical CO2 assisted Co-electrodeposition with different sizes of TiO2 particle
High strength Ni matrix TiO2 composites are prepared by co-electrodeposition with an electrolyte composed of Ni Watts bath, surfactants, CO2 in the supercritical fluid state and various sizes of TiO2 particles. The surfactants and supercritical CO2 (SC-CO2) are used to emulsify the aqueous Ni Watts bath to promote the incorporation of TiO2 particles into the Ni matrix. TiO2 particles with three different average sizes are used in the co-electrodeposition to evaluate the effect on properties of the Ni-TiO2 composites. The grain sizes of the Ni matrix in the composites are compared from the X-ray diffraction results and the Scherrer eq. A refined average grain size in the Ni matrix is observed when using TiO2 particles with a larger size. The TiO2 is evaluated by energy-dispersive X-ray spectroscopy (EDX), and the TiO2 distribution is quantified by the coefficient of variation (cov) of the local density of Ti from the EDX result. The TiO2 content attained 4.5 wt% with the lowest cov value (which suggests the most uniform distribution) in the composite when the smallest (21 nm) TiO2 particles are used. The TiO2 content achieves 22.3 wt% with the highest cov value (which suggests the least uniform distribution) when the largest (5 μm) TiO2 particles are used. Microhardness of the Ni-TiO2 composites is found to be highly depended on the cov value. Hence, the Ni-TiO2 composite prepared with the smallest TiO2 particles shows the highest microhardness at 1274 HV.