{"title":"基于碳纳米管薄膜/聚苯胺的高效可穿戴热电复合材料","authors":"Jing Huang, Xiaohua Liu, Yong Du","doi":"10.1016/j.jmat.2023.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>Polyaniline (PANI) was prepared by <em>in-situ</em> polymerization and compounded on the two-dimensional network structural multi-walled carbon nanotube film (CNTF). Compared with the CNT/PANI composites fabricated by using CNT powders or dispersions, the compact and continuous network structure of CNTF/PANI is beneficial to both the thermoelectric and mechanical properties of the composites. The resultant CNTF/PANI composites with PANI polymerization time of 5 h obtain an electrical conductivity of 1 338.4 S/cm and Seebeck coefficient of 63.3 μV/K at 360 K, which are 168.7% and 5.7% higher than those of the CNTF (498.1 S/cm and 59.9 μV/K at 360 K). Consequently, a maximum power factor of 536.8 μW·m<sup>−1</sup>·K<sup>−2</sup> at 360 K is acquired, which is about 2 times higher than that of CNTF (181.7 μW·m<sup>−1</sup>·K<sup>−2</sup> at 360 K). The electrical conductivity of the composites could maintain 93.3% after being bent for 500 times, indicating the excellent flexibility. The tensile strength, Young's Modulus and toughness of CNTF/PANI composites (232.3 MPa, 3.6 GPa and 20.1 MJ/m<sup>3</sup>, respectively) are 3.5, 2.6 and 2.1 times of those of the CNTF. The flexible, free-standing, lightweight and high-strength CNTF/PANI composites reveal the excellent thermoelectric performance, which are promising in the applications in wearable thermoelectric devices.</p></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"10 1","pages":"Pages 173-178"},"PeriodicalIF":8.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235284782300103X/pdfft?md5=dd73cdd1bda379a74958c0e5e0b3f4f4&pid=1-s2.0-S235284782300103X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly efficient and wearable thermoelectric composites based on carbon nanotube film/polyaniline\",\"authors\":\"Jing Huang, Xiaohua Liu, Yong Du\",\"doi\":\"10.1016/j.jmat.2023.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyaniline (PANI) was prepared by <em>in-situ</em> polymerization and compounded on the two-dimensional network structural multi-walled carbon nanotube film (CNTF). Compared with the CNT/PANI composites fabricated by using CNT powders or dispersions, the compact and continuous network structure of CNTF/PANI is beneficial to both the thermoelectric and mechanical properties of the composites. The resultant CNTF/PANI composites with PANI polymerization time of 5 h obtain an electrical conductivity of 1 338.4 S/cm and Seebeck coefficient of 63.3 μV/K at 360 K, which are 168.7% and 5.7% higher than those of the CNTF (498.1 S/cm and 59.9 μV/K at 360 K). Consequently, a maximum power factor of 536.8 μW·m<sup>−1</sup>·K<sup>−2</sup> at 360 K is acquired, which is about 2 times higher than that of CNTF (181.7 μW·m<sup>−1</sup>·K<sup>−2</sup> at 360 K). The electrical conductivity of the composites could maintain 93.3% after being bent for 500 times, indicating the excellent flexibility. The tensile strength, Young's Modulus and toughness of CNTF/PANI composites (232.3 MPa, 3.6 GPa and 20.1 MJ/m<sup>3</sup>, respectively) are 3.5, 2.6 and 2.1 times of those of the CNTF. The flexible, free-standing, lightweight and high-strength CNTF/PANI composites reveal the excellent thermoelectric performance, which are promising in the applications in wearable thermoelectric devices.</p></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"10 1\",\"pages\":\"Pages 173-178\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235284782300103X/pdfft?md5=dd73cdd1bda379a74958c0e5e0b3f4f4&pid=1-s2.0-S235284782300103X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235284782300103X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235284782300103X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly efficient and wearable thermoelectric composites based on carbon nanotube film/polyaniline
Polyaniline (PANI) was prepared by in-situ polymerization and compounded on the two-dimensional network structural multi-walled carbon nanotube film (CNTF). Compared with the CNT/PANI composites fabricated by using CNT powders or dispersions, the compact and continuous network structure of CNTF/PANI is beneficial to both the thermoelectric and mechanical properties of the composites. The resultant CNTF/PANI composites with PANI polymerization time of 5 h obtain an electrical conductivity of 1 338.4 S/cm and Seebeck coefficient of 63.3 μV/K at 360 K, which are 168.7% and 5.7% higher than those of the CNTF (498.1 S/cm and 59.9 μV/K at 360 K). Consequently, a maximum power factor of 536.8 μW·m−1·K−2 at 360 K is acquired, which is about 2 times higher than that of CNTF (181.7 μW·m−1·K−2 at 360 K). The electrical conductivity of the composites could maintain 93.3% after being bent for 500 times, indicating the excellent flexibility. The tensile strength, Young's Modulus and toughness of CNTF/PANI composites (232.3 MPa, 3.6 GPa and 20.1 MJ/m3, respectively) are 3.5, 2.6 and 2.1 times of those of the CNTF. The flexible, free-standing, lightweight and high-strength CNTF/PANI composites reveal the excellent thermoelectric performance, which are promising in the applications in wearable thermoelectric devices.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.