Siqi Wang, Zhengyu Luo, Weiguang Liu, Tengfei Hu, Zhongying Zhao, Michael G Rosenfeld, Xiaoyuan Song
{"title":"三维基因组及其对人类健康和疾病的影响","authors":"Siqi Wang, Zhengyu Luo, Weiguang Liu, Tengfei Hu, Zhongying Zhao, Michael G Rosenfeld, Xiaoyuan Song","doi":"10.1093/lifemedi/lnad012","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.</p>","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":" ","pages":"lnad012"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749360/pdf/","citationCount":"0","resultStr":"{\"title\":\"The 3D genome and its impacts on human health and disease.\",\"authors\":\"Siqi Wang, Zhengyu Luo, Weiguang Liu, Tengfei Hu, Zhongying Zhao, Michael G Rosenfeld, Xiaoyuan Song\",\"doi\":\"10.1093/lifemedi/lnad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.</p>\",\"PeriodicalId\":74073,\"journal\":{\"name\":\"Life medicine\",\"volume\":\" \",\"pages\":\"lnad012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/lifemedi/lnad012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnad012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The 3D genome and its impacts on human health and disease.
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.