ph依赖性溶解度预测优化药物吸收和化合物吸收的植物

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anne Bonin, Floriane Montanari, Sebastian Niederführ, Andreas H. Göller
{"title":"ph依赖性溶解度预测优化药物吸收和化合物吸收的植物","authors":"Anne Bonin,&nbsp;Floriane Montanari,&nbsp;Sebastian Niederführ,&nbsp;Andreas H. Göller","doi":"10.1007/s10822-023-00496-3","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous solubility is the most important physicochemical property for agrochemical and drug candidates and a prerequisite for uptake, distribution, transport, and finally the bioavailability in living species. We here present the first-ever direct machine learning models for pH-dependent solubility in water. For this, we combined almost 300000 data points from 11 solubility assays performed over 24 years and over one million data points from lipophilicity and melting point experiments. Data were split into three pH-classes − acidic, neutral and basic − , representing the conditions of stomach and intestinal tract for animals and humans, and phloem and xylem for plants. We find that multi-task neural networks using ECFP-6 fingerprints outperform baseline random forests and single-task neural networks on the individual tasks. Our final model with three solubility tasks using the pH-class combined data from different assays and five helper tasks results in root mean square errors of 0.56 log units overall (acidic 0.61; neutral 0.52; basic 0.54) and Spearman rank correlations of 0.83 (acidic 0.78; neutral 0.86; basic 0.86), making it a valuable tool for profiling of compounds in pharmaceutical and agrochemical research. The model allows for the prediction of compound pH profiles with mean and median RMSE per molecule of 0.62 and 0.56 log units.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 3","pages":"129 - 145"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants\",\"authors\":\"Anne Bonin,&nbsp;Floriane Montanari,&nbsp;Sebastian Niederführ,&nbsp;Andreas H. Göller\",\"doi\":\"10.1007/s10822-023-00496-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous solubility is the most important physicochemical property for agrochemical and drug candidates and a prerequisite for uptake, distribution, transport, and finally the bioavailability in living species. We here present the first-ever direct machine learning models for pH-dependent solubility in water. For this, we combined almost 300000 data points from 11 solubility assays performed over 24 years and over one million data points from lipophilicity and melting point experiments. Data were split into three pH-classes − acidic, neutral and basic − , representing the conditions of stomach and intestinal tract for animals and humans, and phloem and xylem for plants. We find that multi-task neural networks using ECFP-6 fingerprints outperform baseline random forests and single-task neural networks on the individual tasks. Our final model with three solubility tasks using the pH-class combined data from different assays and five helper tasks results in root mean square errors of 0.56 log units overall (acidic 0.61; neutral 0.52; basic 0.54) and Spearman rank correlations of 0.83 (acidic 0.78; neutral 0.86; basic 0.86), making it a valuable tool for profiling of compounds in pharmaceutical and agrochemical research. The model allows for the prediction of compound pH profiles with mean and median RMSE per molecule of 0.62 and 0.56 log units.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"37 3\",\"pages\":\"129 - 145\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00496-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00496-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水溶性是农药和候选药物最重要的物理化学性质,也是生物吸收、分布、运输和最终生物利用度的先决条件。我们在这里提出了第一个直接机器学习模型,用于ph依赖性的水中溶解度。为此,我们结合了24年来进行的11项溶解度分析的近30万个数据点,以及亲脂性和熔点实验的100多万个数据点。数据被分为酸性、中性和碱性三个ph等级,分别代表动物和人类的胃和肠道以及植物的韧皮部和木质部。我们发现使用ECFP-6指纹的多任务神经网络在单个任务上优于基线随机森林和单任务神经网络。我们的最终模型包含三个溶解度任务,使用来自不同测定的ph级组合数据和五个辅助任务,结果均方根误差总体为0.56 log单位(酸性0.61;中性的0.52;碱性0.54)和Spearman秩相关为0.83(酸性0.78;中性的0.86;Basic 0.86),使其成为制药和农化研究中化合物分析的有价值的工具。该模型可以预测化合物的pH值,每分子的平均和中位数RMSE分别为0.62和0.56对数单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants

pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants

Aqueous solubility is the most important physicochemical property for agrochemical and drug candidates and a prerequisite for uptake, distribution, transport, and finally the bioavailability in living species. We here present the first-ever direct machine learning models for pH-dependent solubility in water. For this, we combined almost 300000 data points from 11 solubility assays performed over 24 years and over one million data points from lipophilicity and melting point experiments. Data were split into three pH-classes − acidic, neutral and basic − , representing the conditions of stomach and intestinal tract for animals and humans, and phloem and xylem for plants. We find that multi-task neural networks using ECFP-6 fingerprints outperform baseline random forests and single-task neural networks on the individual tasks. Our final model with three solubility tasks using the pH-class combined data from different assays and five helper tasks results in root mean square errors of 0.56 log units overall (acidic 0.61; neutral 0.52; basic 0.54) and Spearman rank correlations of 0.83 (acidic 0.78; neutral 0.86; basic 0.86), making it a valuable tool for profiling of compounds in pharmaceutical and agrochemical research. The model allows for the prediction of compound pH profiles with mean and median RMSE per molecule of 0.62 and 0.56 log units.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信